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Traffic state prediction is an essential component and an underlying back-
bone of intelligent transportation systems especially in the context of smart
city framework. Its significance is mainly twofold in modern transportation
systems: supporting advanced traffic operations and management for high-
ways and urban road network to mitigate traffic congestion, and enabling
individual drivers with connected vehicles in the traffic system to dynami-
cally optimize their routes to improve travel time. Traffic state prediction with
interval-based pointwise methods at 15-minute or hourly interval is common
in traffic literature. However, because traffic dynamics are a continuous pro-
cess over time, the discrete-time pointwise methods for traffic prediction at
a fixed time interval hardly meet the advanced demands of continuous pre-
diction in modern transportation systems. To close the gap, we propose func-
tional approaches to intraday and day-by-day continuous-time prediction for
traffic volume. This research focuses on network-level traffic flow predictions
concurrently for all locations of interest. Two functional approaches are in-
troduced, namely the network-integrated functional time series model and the
functional neural network model. With functional approaches, a 24-hour in-
traday traffic profile is modeled as a functional curve over time, and sequences
of historical traffic curves are used to predict traffic curves for near future days
in a row and multiple locations of interest. We also include the functional
varying coefficient model, Sparse VAR and traditional AR models in the
comparative study, and the empirical results show that the network-integrated
functional time series model outperforms other approaches in terms of the ac-
curacy of predictions at network-scale.

1. Introduction.

1.1. Background.

Traffic state prediction is an essential component and an underlying backbone of intelligent
transportation systems, especially in the context of smart city framework. Its significance is
mainly twofold in modern transportation systems: (1) supporting advanced traffic operations
and management for highways and urban road network to mitigate traffic congestion, such
as enabling the traffic signal control system to proactively optimize a control plan based on
prediction. (2) enabling individual drivers with connected vehicles in the connected traffic
system to dynamically optimize their routes during a trip based on network state predic-
tion to improve travel time. Fig. 1 (b) illustrates the concept of a connected traffic system.
With advanced communication technology, connected vehicles can use internet connectivity
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to send and receive real-time information via communication between vehicles, transporta-
tion infrastructure, mobile devices, cloud computing platforms, and the global positioning
system (GPS), etc. Giving vehicles the ability to communicate with each other and beyond
brings significant value to safety, traffic efficiency and situational awareness. For instance,
the vehicle-to-network (V2N) via cloud services enables real-time receiving network traffic
prediction and routing optimization; the vehicle-to-infrastructure (V2I) enables traffic sig-
nal timing optimization and prioritization; the vehicle-to-vehicle (V2V) can help to avoid
collision; the vehicle-to-pedestrian (V2P) can give safety alerts to pedestrians and bicyclists.

Although methods for traffic state prediction have been extensively studied in the past
decades, most are discrete-time pointwise predictive methods for a fixed time interval. Differ-
ent time intervals require different models to be estimated. Among others, traffic state predic-
tion at 15-minute interval or hourly interval is common in traffic literature. However, because
traffic dynamics are a continuous process over time, the discrete-time pointwise methods for
traffic prediction at a fixed time interval hardly meet the advanced demands of continuous
prediction for any time instant in modern transportation systems. Continuity is important in
traffic prediction, because traffic generation by a network-wide population is a continuous
random process where it may occur at any location and time of day. As intelligent transporta-
tion systems advance, the near-future traffic state is expected to be predicted for any location
and time of day. It can be envisioned that, for instance, given the network-level traffic flow
profile predicted for 24-hour ahead, the connected traffic system allows network operators
to formulate proactive traffic management and control plans to balance network-wide traffic
flows, and connected vehicles to automatically calculate an optimal route for their trips.

Therefore, an approach to intraday and day-by-day continuous-time traffic state prediction
is necessary. To close the gap, we propose functional approaches to network-level prediction.
The proposed approaches can be easily applied to both highways and an urban road network,
and support real-time operations for congestion mitigation, trip planning, route guidance ser-
vice, travel time saving and emission reduction. On the other hand, the functional approach
can provide non-interval-based prediction that relaxes the need to estimate different models
for different time intervals.

Fig. 1. (a) Illustration of network-level functional traffic predictions concurrently for
multi-locations; (b) Connected traffic system; (c) Traffic data collection via loop detectors

1.2. Characteristics of traffic data.
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1.2.1. Functional traffic time series. The functional approach is a powerful modeling
tool for continuous data but requires dense and long measurements. Hence, data collection
may pose a challenge in many circumstances. Thanks to innovative communication technolo-
gies, evolving sensor designs, data storage capacity, and data acquisition processes that made
high-resolution and high-frequency traffic data collection across a road network possible.
Traffic flow data can be automatically collected via infrared sensor, magnetic sensor, pneu-
matic tube sensor or inductive loop detector. The sensors are usually mounted on roadside
hydro poles. The inductive loop detectors are deployed under road pavement across networks.
Fig. 1 (c) illustrates a typical intersection with inductive loop detectors. A loop detector can
transmit data at a frequency of 20 seconds via road-side controller cabinet to the computers
in the Traffic Control Center. The traffic data can then be aggregated to any scale of dataset
to meet the need of functional modeling. As traffic flows are stochastic and dynamic pro-
cesses where each flow is a function of time, it can be assumed that an intraday traffic flow
at a location is generated by an underlying random function. With functional approaches, a
24-hour intraday traffic profile can be approximated with a functional curve. A sequence of
functional curves from consecutive days forms a functional time series. Two exemplar plots
of functional time series from Highway 401 westbound and eastbound count stations in the
city of Toronto are shown in Fig. 2(a) and (b) respectively. The graphs show that different
locations might have their own unique features as well as some features in common.

Fig. 2. Exemplar functional traffic time series from Highway 401

1.2.2. Characteristics of traffic flows. Observing how network-wide traffic flows ex-
hibit co-movement phenomenon and repetitive patterns over time and space, it is natural
to find that network-wide traffic flows, upstream and downstream, segment adjacent to seg-
ment, are not independent but interactive and associated with each other. These network-level
spatiotemporal autocorrelation and cross-correlation within and between traffic flows are re-
flected in Fig. 3 where (a) shows temporal cross-correlation between two functional traffic
time series from two locations on Highway 401 westbound, (b) shows a correlogram of traf-
fic flows from 26 locations on Highway 401 westbound. The off-diagonal elements show the
spatial cross-correlations between traffic flows. These network-level characteristics of traffic
flows must be captured and reflected in prediction. Although functional approaches are be-
coming much more developed and applied in diverse research fields (Ferraty, 2011; Aneiros
et al., 2017), showing encouraging predictive outcomes, they are not sufficiently addressed
or with rather sparse attention in traffic state prediction, particularly none for network-level
prediction. While a few functional studies now exist in traffic flow prediction (Besse and
Cardot, 1996; Chiou, 2012; Klepsch, Klüppelberg and Wei, 2017; Guardiola, Leon and Mal-
lor, 2014; Wagner-Muns et al., 2018), all are limited to a single count station or location.
Therefore, to consider network-level spatiotemporal correlation in prediction, this research
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develops a functional approach to integrate network-level traffic flows from all locations of
interest. Fig. 1 (a) illustrates the concept of network-level functional traffic prediction. The
blue dots denote the locations of interest. The functional time series from all blue dots are
assembled as a tensor to estimate a functional model, then the model is used to predict traffic
curves for near future days in a row and all locations with blue dots. The background map in
Fig. 1 (a) is an excerpt of the OpenStreetMap® (https://www.openstreetmap.org).

Fig. 3. Network-wide spatiotemporal correlations among traffic flows

Two functional approaches are introduced in this research: i.e. the network-integrated
functional time series model (NIFTS) and the functional neural network (FNN). The func-
tional varying coefficient autoregressive model (FVCAR), sparse vector autoregressive model
(sparseVAR) and traditional autoregressive (AR) model are also included in the comparative
study.

A main contribution of this research is that functional principal component analysis
(FPCA) with a matrix-variate factor model and a vector autoregressive (VAR) model are
seamlessly integrated to capture network-level spatiotemporal co-movement of traffic flows
as well as location-specific traffic features, which significantly improve the accuracy of pre-
diction. This is a classic statistical approach. Thanks to FPCA and matrix-variate factor model
for its powerful dimension reduction and data representation that made network-level predic-
tion possible. The FNN model and the FVCAR model also provide competitive ways for
traffic functional prediction.

The rest of this paper is organized as follows. Section 2 reviews relevant literature for traf-
fic state prediction. Section 3 introduces the methodological basis for functional approaches.
Section 4 presents the comparative study with four ground truth datasets. Discussion and
conclusion are provided in section 5.

2. Relevant literature.

Over past decades, a wealth of predictive methods can be found in traffic literature for
short term traffic state prediction. From early time prediction methods for a single location or
a road segment to most recently for network-wide prediction, the methodology development
follows a few research trajectories: traffic flow theory and simulation, statistical method,
machine learning algorithms, or hybrid approach.

From the perspective of theoretical basis and data representation, the methodology for
traffic state prediction may be divided into two classes: interval-based pointwise method and
functional approach. With different modeling techniques, two classes of methodologies differ
in their capacity to deal with different data forms. The interval-based method uses discrete
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time series data, whereas, the functional approach takes continuous functional time series
data, thus resulting in two forms of prediction.

2.1. Method for pointwise prediction.

The class of interval-based pointwise methods provides discrete prediction, i.e. h-step-
ahead pointwise prediction for a fixed time interval such as 5, 15, 30 or 60 minutes which
depends on the resolution of training data used to estimate the model. Because there is an
overwhelming volume of literature in this regard, only a few examples are listed in this
review due to limited space. More thorough reviews may refer to Ermagun and Levinson
(2018); Karlaftis and Vlahogianni (2011); Lana et al. (2018); Vlahogianni, Karlaftis and Go-
lias (2014). In early times, many predictive methods were developed for a single location
or a few segments of roadway due to technical constraint in data collection. Some examples
may refer to: traffic flow theory based approaches (Deng, Lei and Zhou, 2013; Munoz et al.,
2003; Nanthawichit, Nakatsuji and Suzuki, 2003; Wang and Papageorgiou, 2005), statisti-
cal time series methods (Kamarianakis and Prastacos, 2005; Min and Wynter, 2011; Billy
M. Williams and Lester A. Hoel, 2003), machine learning algorithms (Abdulhai, Porwal
and Recker, 2002; Guo and Zhu, 2009; Qiao, Yang and Lam, 2001), simulation approach
(Abadi, Rajabioun and Ioannou, 2015), regression or hybrid methods (Cetin and Comert,
2006; Dell’Acqua et al., 2015; Oh, Kim and Hong, 2015; Wang, Deng and Guo, 2014; Zhang,
Zhang and Haghani, 2014; Zheng Weizhong, Lee Der-Horng and Shi Qixin, 2006; Zhu et al.,
2020). In recent years, the availability of big data makes network-wide prediction possible.
Most solutions largely depend on machine learning algorithms such as long short-term mem-
ory (LSTM) recurrent neural network, convolution neural network (CNN), multidimensional
support vector regression (MSVR), or tensor-based hybrid method. Most recent studies in
this regard may refer to Dai et al. (2019); Feng et al. (2019); Gu et al. (2020); Jia and Yan
(2020); Laharotte (2016); Liu et al. (2020); Lv et al. (2015); Ma et al. (2017); Mitrovic et al.
(2015); Tan et al. (2016); Wang et al. (2011); Wang, Chen and He (2019); Yu et al. (2017).
However, the interval-based method lacks flexibility if one wants to produce a prediction at
and for any random time point that does not coincide with the interval window used for model
estimation.

2.2. Method for functional prediction.

In contrast, the class of functional approach can provide functional prediction. Because the
outcome of functional prediction is expressed as a continuous functional curve over time, it
can therefore satisfy the need that prediction can be provided for any time instance. The rele-
vant theory and techniques can be found in Ferraty and Vieu (2006); Ramsay and Silverman
(2002, 2005) and comprehensive reviews are available via Müller (2005, 2008); Rice (2004);
Zhao, Marron and Wells (2004).

There are two lines of approaches for functional prediction that are determined by the
structure of the functional data set. If it is longitudinal functional data without time stamps,
a functional linear regression model may be considered where both the response and covari-
ates are functions. Recent studies along this line include Chiou (2012); Chiou and Li (2007);
Chiou and Müller (2007); Müller and Zhang (2005); Yao, Müller and Wang (2005a,b); Yao,
Lei and Wu (2015); Ramsay and Dalzell (1991), among others. If it is a functional time
series data, a functional autoregressive (FAR) model may be considered where temporal de-
pendence between lagged curves can be captured. The theoretical elaboration of the FAR
model and the functional best linear predictor for a general linear process may refer to
Bosq (2000); Hörmann and Kidziński (2015); Hörmann and Kokoszka (2010); Horváth and
Kokoszka (2012); Horváth, Kokoszka and Rice (2014). A surrogate approach is proposed
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by Aue, Norinho and Hörmann (2015); Hörmann, Kidziński and Hallin (2015); Horváth and
Kokoszka (2012) to approximate the FAR model using functional principal component anal-
ysis (FPCA).

Although functional approach and relevant theory have been developed for more than three
decades since it was proposed by Bosq (1991) and successfully applied to many research ar-
eas, its research and applications in the area of traffic state prediction appear to be very sparse.
Only a few studies relevant to traffic flow data can be found from statistical literature (Besse
and Cardot, 1996; Chiou, 2012; Klepsch, Klüppelberg and Wei, 2017) and traffic literature
(Guardiola, Leon and Mallor, 2014; Wagner-Muns et al., 2018). Following the modeling
process defined by Bosq (1991), Besse and Cardot (1996) estimated a FAR(1) model with
one-year long hourly traffic volume from the motorway tollbooth of Saint-Arnoux near Paris
and compared it with a SARIMA model. Given a partial traffic flow trajectory of a day up to
the current time, Chiou (2012) employed a functional mixture prediction approach to predict
the unobserved partial flow trajectory for the rest of the day. The algorithm is validated with
15-min time interval traffic volume data from a dual loop detector near Shea-San Tunnel on
National Highway 5 in Taiwan. Extending previous work in Besse and Cardot (1996), Klep-
sch, Klüppelberg and Wei (2017) approximated a functional ARMA(p, q) model with aid
of FPCA and investigated the prediction algorithm with highway traffic speed data from a
fixed point on a highway (A92) in Southern Bavaria, Germany. Guardiola, Leon and Mal-
lor (2014) employed the FPCA approach to analyze and monitor the pattern of daily traffic
flow profile using 1-min interval traffic data from the I-94 Freeway in Twin Cities, Min-
nesota. Wagner-Muns et al. (2018) performed functional forecast with aid of FPCA using
5-year long functional traffic volume time series collected from inductive loop detectors lo-
cated at station (S110) on I-94 eastbound in the Minneapolis-St. Paul area and compared it
with the traditional seasonal ARIMA model. Crawford, Watling and Connors (2017) used
functional linear models to analyze the distribution of flows throughout a day, identified the
predictable variability in daily traffic flow profiles, and output an average flow profile for each
different day type. Two years of data from a loop detector on a key arterial route connecting
Stockport to the city of Manchester is used to validate the proposed method. Nonetheless,
the functional approaches aforementioned relevant to traffic data are based on loop detectors
from and for a single location. A functional approach is missing at network-level prediction
for multiple locations accounting for spatiotemporal correlations. To this end, we propose a
network-integrated functional approach to close the gap.

In addition, it is noteworthy that all functional approaches mentioned above are statistical
models. To the best of our knowledge, there is no functional traffic data analysis and predic-
tion done in the line of machine learning in literature so far. Although, as early as 2005, Rossi
and Conan-Guez (2005) and Rossi et al. (2005) proposed an approximate projection method
making functional data possible to be taken by multi-layer perceptron neural network and
radial-basis neural network. However, there has been no open-source implementation avail-
able thus far. In 2020, Thind, Multani and Cao (2020) developed an open-source package
that makes functional neural network available. Both Thind et al. and Rossi et al. use pro-
jection method to represent functional data through a basis expansion in the functional space
and work directly on numerical coefficients of basis expansion in neural network. A subtle
difference is that Rossi et al. suggest a correction to those coefficients via the Choleski de-
composition if the basis functions are not orthonormal. We introduce functional approach in
both statistical and machine learning lines, i.e. functional time series and functional neural
network approach, in this research for network-level traffic state prediction. The meaning is
twofold: (1) it aims to introduce new ways to model and predict traffic data; (2) compare
functional prediction between two lines and with other approaches at network scale.

3. Methodology.
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In this section, we introduce theoretical background and mathematical form of functional
time series approach and functional neural network, respectively.

3.1. Network-integrated functional time series approach.

The network-integrated functional time series approach consists of four modules. With the
aid of functional principal component analysis (FPCA) as a dimension reduction tool, we
transform the traffic functional data to FPC scores. The network-level functional time series
can be transformed into its frequency domain which allows reassembling of the features (i.e.
the FPC scores) in a form of tensor-based matrix-variate time series. Under this framework,
we use matrix-variate factor model to decompose the networked tensor-based traffic time
series into latent common factors and idiosyncratic components, where the former reflects
the co-movement pattern of network traffic flows and the latter reflects local traffic features.
The latent common factors incorporate spatial correlation among traffic flows via covariance
structure of functional data from all locations of interest. The dynamics of co-movement and
local traffic features are captured by autoregressive models respectively. The vector autore-
gressive model of the latent common factors not only accounts for network-wide temporal
dependence, but also spatial cross-correlation in prediction. In theory, Aue, Norinho and Hör-
mann (2015) had shown that the predictions by the FPCA method are consistent with the ones
by Bosq’s p-order Functional Autoregressive (i.e. FAR(p)) model. Klepsch, Klüppelberg and
Wei (2017) also quantified that the difference between the functional best linear prediction
and the best linear prediction of the approximating vector model tends to zero if the dimen-
sion of the vector model approaches infinity.

3.1.1. Mathematical form. The mathematical form of the proposed functional time se-
ries approach is written as follows.

(3.1) xi,t (·) = x̄i,· (·) +
∑∞

j=1
ϕi, jξi,t, j

(3.2) ξ·,t,· =
(
ξi,t, j
)

1≤i≤N
1≤ j≤J

= Q1FtQT
2 + e·,t,·

(3.3) vec (Ft) = A1vec (Ft−1) + A2vec (Ft−2) + · · · + Apvec
(
Ft−p

)
+ ut

(3.4) ei,t,· = Bi,1ei,t−1,· + Bi,2ei,t−2,· + · · · + Bi,qiei,t−qi,· + εi,t,·

where Eq.(3.1) is the functional principal component model (Ramsay and Silverman, 2005).
Based on the Karhunen-Loève expansion theorem, a functional curve can be expressed by a
linear combination of the FPC scores. The functional principal components (i.e. eigenfunc-
tions) represent the dominant modes of variation and covariation, and form an orthogonal
basis. The FPC scores are the projection coordinates of the functional curve to this orthogo-
nal system. The scores can be treated as a dual form of the functional curve in Hilbert space.
For all equations, subscript i = 1, · · · ,N denotes the location index and t = 1, · · · ,T denotes
the index of day. To simplify, i and t are omitted in the explanation of variables. xi,t (·) denotes
a functional curve and x̄i,· (·) denotes the mean functional curve where x̄i,· (·) = 1/T

∑T
t=1 xi,t (·).

In the linear combination of Eq.(3.1), the coefficient ϕi, j is the jth functional principal com-
ponent where j = 1,2, · · · . Any two functional coefficients satisfy

∥∥∥ϕi, j

∥∥∥2 = ∫ ϕi, j (t)2 dt = 1
and
〈
ϕi,l, ϕi,m

〉
=
∫
ϕi,l (t)ϕi,m (t) dt = 0 where l , m, j = 1,2, · · ·because they are orthonormal

functions, i.e. the eigenfunctions of the covariance of the functional data set. ξi,t, j denotes
the jth FPC score of a functional curve at location i on day t which is given by ξi,t, j =〈
ϕi, j, xi,t − Exi,t

〉
=
∫
ϕi, j (s)

[
xi,t (s) − Exi,t (s)

]
ds. In functional principal component analysis,
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the dimension reduction can be achieved by truncating the number of functional principal
components up to J based on the percentage of variance explained, i.e. j = 1,2, · · · , J.

Eq.(3.2) is a matrix-variate factor model due to Wang, Liu and Chen (2019). ξ·,t,· is a N × J
matrix that is a reassembled form of ξi,t, j from Eq.(3.1). ξ·,·,· is a N × J × T tensor that repre-
sents the networked functional traffic time series. ξ·,t,· is one slice of ξ·,·,· representing a matrix
of location by FPC score on the day t. The matrix-variate factor model decomposes ξ·,t,· into
latent common factor component Ft and idiosyncratic component e·,t,·. Ft is a k1 × k2 factor
matrix. As k1 and k2 are significantly smaller than N and J respectively, i.e. k1 << N, k2 << J,
therefore, Eq.(3.2) performs a further dimension reduction in both row and column directions
of ξ·,t,·so that the prediction is carried out in a lower dimension factor space. Q1 is a N × k1
front-loading matrix, and QT

2 is a k2 × J back-loading matrix. According to Wang, Liu and
Chen (2019), the front-loading matrix Q1 =

[
q1,1, q1,2, · · · ,q1,k1

]
, where q1, j, j = 1, · · · , k1, is

the unit eigenvectors of a super matrix M1. A sample version of the super matrix M1 is con-
structed as M̂1 =

∑h0
h=1
∑J
ℓ=1
∑J
ℓ′=1 Ω̂x,ℓℓ′ (h) Ω̂T

x,ℓℓ′ (h), where Ω̂x,ℓℓ′ (h) = 1
T−h
∑T−h

t=1 ζt,ℓζ
T
t+h,ℓ′ , ζt,ℓ

is the ℓth column vector of ξ·,t,·, h is an integer variate, and h0 is a pre-specified positive
integer. Then, the sample version of Q̂1 =

[
q̂1,1, q̂1,2, · · · , q̂1,k1

]
, where q̂1,1, · · · , q̂1,k1 are the

eigenvectors of M̂1 corresponding to its k1 largest eigenvalues. The same procedure is ap-
plied to the transpose of ξ·,t,· to construct M̂2 to estimate the back-loading matrix Q̂2. For the
purpose of prediction, the number of row factors k1 and column factors k2 can be estimated
through the cross-validation method. e·,·,· is a N × J × T tensor where each slice e·,t,· is a
N × J matrix. Overall, Eq.(3.2) is a tensor-based factor model where the latent common fac-
tor component contains convoluted spatiotemporal correlations and the co-movement pattern
of network-wide traffic flows. The idiosyncratic component contains location-specific traffic
features. More specifically, the front loading Q1 reflects the (row) spatial dependence, i.e. the
network-level traffic flow dependence between locations. The back loading Q2 reflects the
(column) dependence among the FPC scores of the traffic flow curves, i.e. the network-level
traffic flow dependence in varying magnitude.

Eq.(3.3) and Eq.(3.4) follow autoregressive processes that reflect the dynamics and tem-
poral dependence of co-movement of traffic flows and local traffic features. vec (Ft) is the
vectorized version of Ft from Eq. (3.2). The coefficients A1, · · · ,Ap are r × r matrices,
where r = k1k2 , and ut = (u1t, · · · ,urt)

′

are white noise, p is the lag order. The coefficients
Bi,1, · · · ,Bi,qi are J × J matrices, εi,t =

(
ε1,t, · · · , εN,t

)′
is white noise, qi is the lag order asso-

ciated with location i = 1, · · · ,N. The coefficients A1, · · · ,Ap and Bi,1, · · · ,Bi,qi of two autore-
gressive models can be estimated by the conventional Yule–Walker method and the innova-
tions algorithm. Both p and qi can be chosen based on BIC criterion (Brockwell and Davis,
2016).

3.1.2. The modeling mechanism and data structure. Fig. 4 shows the working mech-
anism flow chart of the proposed methodology. This approach sequentially concatenates a
functional principal component analysis method, a matrix-variate factor model, and two au-
toregressive models for networked functional prediction.

Fig. 4. Flow chart of the proposed methodology
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According to the flow chart in Fig. 4, a length of T functional time series curves at a
location is transformed to a T × J matrix of FPC scores via FPCA method. The matrices
of FPC scores from all locations of interest are re-assembled to form a N × J × T tensor
which is a matrix-variate time series. Fig. 5 shows the structure of the re-assembled FPC
score tensor. This matrix-variate time series is then decomposed into a latent common factor
component and an idiosyncratic component. The prediction is carried out separately for the
latent common factor series and the idiosyncratic series. Two predictions are combined and
then inversely projected back to the functional space to obtain the functional prediction.

Fig. 5. Data structure of a matrix-variate time series

It is noteworthy that the latent factor component not only agglomerates the networked co-
movement pattern and the spatiotemporal correlations of traffic flows, but also further reduces
the dimensions of the FPC score tensor in both column J and row N directions. The idiosyn-
cratic component reflects traffic flow characteristics at an individual location. Therefore, the
combined prediction reflects both network-level and local traffic dynamic features.

3.2. Functional Neural Network.

Neural Networks are widely and extensively used for big data regression, classification and
prediction. Fig. 6 shows the architecture of the functional neural network used for networked
functional traffic flow prediction in this research. It consists of one input layer and one output
layer with multiple hidden layers in between. xi,t (s) is a function to describe traffic profile
at location i and day t. To train the neural network, xi,t−1 (s) , · · · , xi,t−p (s) in the input layer
is pairwised with corresponding xi,t (s) in the output layer, where i = 1, · · · ,N and t = p +
1, · · · ,T . There are totally (T − p) pairwised input-output traffic curves for the neural network
training. υ(u)

i is the activated output of an individual neuron in the hidden layers where u is
the index of hidden layers and i is the index of neurons in each hidden layer. n1,n2, · · · ,nu
denote the number of neurons in each hidden layer respectively. b(u) is a vector of bias in the
hidden layers.
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Fig. 6. Schematic architecture of the functional neural network

In the model training process, this structure of neural network captures the spatiotemporal
dependence of traffic flows between current day and previous days and all locations of inter-
est. This convoluted dependence is stored in the weight matrix and then used to predict traffic
flow profile for near future days given traffic flow profiles on the adjacent past p days.

In the functional neural network, the mathematical form of a generalized neuron i in the
first hidden layer can be expressed as Eq. (3.5). For generality, the functional neural network
can accept scalar values as part of its input. Thus, Eq. (3.5) includes both functional input
and scalar input.

(3.5) υ(1)
i = g

 K∑
k=1

∫
T
βi,k (s) xk (s) dt +

D∑
d=1

ω(1)
i,d zd + b(1)

i


where g (·) is a link function, which is called activation function in the context of neu-

ral network theory. K denotes the total number of neurons in the input layer that take
functional data. xk (s) is a function from the kth neuron in the input layer. βi,k (s) is the
weight function between neuron i in the first hidden layer and neuron k in the input layer.
Both xk (s) and βi,k (s) can be expressed by basis expansion, i.e. xk (s) =

∑H
h=1 Ckhϕkh (s) and

βi,k (s) =
∑M

m=1 Cikmϕikm (s) where ϕ (s) is basis function, C is coefficient, H and M denote the
number of basis functions. D denotes the total number of neurons in the input layer that take
scalar value. zd is the scalar input from the dth neuron in the input layer. ωi,d is the weight
between neuron i and d. bi is the bias term for neuron i.

In this research, because all traffic flow profiles are transformed to functional curves, the
functional neural network does not take scalar input. Given an input function xk (s), the out-
put of neuron i in the first hidden layer is υ(1)

i which is a real number. The neuron is called a
functional neuron and βi,k (s) is called functional weight. It is worth mentioning that the func-
tional weight can show the cumulative effect of the predictor onto the response variable over
time, whereas a scalar weight in a non-functional neural network only reflects pointwise and
static effect. As the output of a generalized functional neuron is a scalar value, we need such
neurons only in the first hidden layer of the neural network to take functional input. Neurons
after the first hidden layer are regular neurons that take scalar output from the previous layer.
Functional neural network has a solid theoretical basis. Cybenko (1989) provided theoretical
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proof that a MLP neural network with functional inputs and a single hidden layer can uni-
formly approximate any continuous function of n real variables given only mild conditions on
the activation function. Hence, MLP maintains its universal approximation property through
a functional representation.

4. Prediction and comparative results.

Four ground-truth datasets of traffic volume (i.e. two datasets for weekday and two for
weekend) are used to assess the effectiveness and efficiency of the proposed approaches, i.e.
NIFTS and FNN. The raw data include two years of traffic volumes that were collected from
the inductive loop detectors at 51 locations on Highway 401 in the City of Toronto. The
data are aggregated to 288 data points per day at 5-minute intervals and transformed to a
functional curve using a conventional smoothing technique of basis expansion with rough-
ness penalty. The smoothing procedure including determination of basis functions, regularity
and smoothing parameters may refer to Craven and Wahba (1978); Ramsay and Silverman
(2005). Each functional curve represents an intraday traffic flow profile. At each location, the
data are classified into two functional time series, i.e. weekday and weekend respectively, due
to obvious difference in pattern. The functional traffic time series are divided into training set
and test set. The training set is used for model estimation and the test set is used to validate
model capacity for prediction.

4.1. Model implementation and specification.

4.1.1. Network-integrated functional time series approach. To implement the network-
integrated functional time series approach, every functional time series from a location is
transformed to a matrix of FPC scores. The FPC scores in each column correspond to a prin-
cipal component. The FPC scores in each row correspond to a traffic curve. The number of
rows is equal to the number of days, i.e. the length of the functional time series. The number
of columns is equal to the number of eigenfunctions in Hilbert space that are remained to
approximate the original data. All matrices of FPC scores from all locations of interest are
re-assembled to form a tensor which is a matrix-variate time series as shown in Fig. 5. In ad-
dition, two additional transformation methods, i.e. dynamic FPCA and wavelet method, are
introduced to the line of NIFTS approach as alternatives to FPCA to assess the role of trans-
formation in prediction. Three transformation methods have different mathematical basis.
The theoretical details of the dynamic FPCA may refer to Hörmann, Kidziński and Hallin
(2015) and the wavelet method may refer to Mallat (1989); Percival and Walden (2000).
Three transformation methods use different ways to extract features of the functional data.
The dynamic FPCA transforms the functional curves to dynamic FPC scores. The wavelet
method extracts the features of the functional curves to wavelet coefficients. They replace the
FPC scores in Eq. (3.1). Through comparison, we can identify which transformation method
is more suitable for functional traffic prediction.

The number of eigenfunctions or the number of wavelet coefficients is determined by the
percentage of variance explained (PVE). To minimize loss of information in the data, save for
a parsimony number of eigenfunctions or wavelet coefficients, we let three transformations
satisfy 99% PVE for four ground-truth datasets. Table 1 shows the number of eigenfunctions
and wavelet coefficients reserved respectively in the transformation. According to Eq. (3.2),
the specifications of the front-loading and the back-loading of the matrix factor model are
determined by the cross-validation method. The optimal choice of row factors k1 reserved for
the front-loading and column factors k2 for the back-loading are shown in Table 1 conditional
on the transformation method in Eq. (3.1). The lag order of vector autoregressive models in
Eq. (3.3) and (3.4) is determined by BIC criterion (Brockwell and Davis, 2016).
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Table 1 Specification of Integrated Functional Time Series Approach

4.1.2. Functional neural network approach. The functional neural network for traffic
prediction is set up as the architecture in Fig. 6. Neurons in the input layer take in functional
data and neurons in the output layer give out predicted functional curves. Before it can be
used for prediction, the neural network has to be trained with training data, called super-
vised learning. The training process is to find weight matrices that can map the relationship
or dependency between the response and predictors. Hence, the training data are pairwised
between the input layer and output layer for supervised learning. It is assumed that the traffic
flow profile in the current day is correlated to those in the adjacent past p days. Hence, the
functional traffic curves from the past p days from all locations of interest are loaded to the
input layer and the pairwised functional traffic curves in the current day from all locations are
loaded to the output layer. There are (T − p) pairs of data that can be used to train the neural
network given length of T functional time series, where p is lags. The network-level spatial
correlations of traffic flows are convoluted in the functional weights and numerical weight
matrices in the learning process.

The hyperparameters of the functional neural network such as the number of hidden lay-
ers, neurons in each hidden layer, epochs, validation split, learning rate, number of bases,
activation choice, etc. are optimized with k-fold cross validation method. Details about how
to determine the hyperparameters of functional neural network may refer to Thind, Multani
and Cao (2020).

Table 2 Specification of Functional Neural Network

The training and validation of the functional neural network in this research employ the
Tensorflow package in R (i.e. Keras) as the backend engine. The specification of the trained
functional neural network is shown in Table 2. Fig. 7(a) and (b) show the plots of the network
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training and validation curves and their convergence with two ground-truth datasets. Once the
supervised learning is completed, the neural network can be used for prediction. Given the
most recent p days of traffic profiles as input, the trained functional neural network can output
a traffic profile for the next day.

Fig. 7 Training and validation of Functional Neural Network with Highway 401 datasets of
(a) WB and (b) EB

4.1.3. Other approaches in comparative study. In addition, FVCAR, SparseVAR and
traditional AR models are also included in the comparative study. A classical functional vary-
ing coefficient regression model has functional response, covariates, coefficients as well as
error term. For more details of the classical functional regression model, interested readers
can refer to Chiou, Müller and Wang (2003); Yao, Müller and Wang (2005b); Ramsay and
Silverman (2005); Zhu, Li and Kong (2012). A functional varying coefficient model with net-
work structure was recently proposed by Zhu, Cai and Ma (2022). In this research, to fit the
autoregressive structure of the functional traffic time series, the classical functional regression
model is adapted to yt,i (s) = β0,i (s) +

∑p
n=1 βn,i (s) yt−n,i (s) + Zt,i (s), where yt,i (s) is the func-

tional traffic curve on day t and at location i, s denotes intraday time, β0,i (s) and βn,i (s) are
functional coefficients, n denotes the number of lags in day (n = 1, 2, . . . , p), and Zt,i (s) is a
white noise function with zero mean and covariance function Gt,i (s,u) =Cov

{
Zt,i (s) ,Zt,i (u)

}
.

This model is called functional varying coefficient autoregressive model (FVCAR). All coef-
ficient functions can be forced to be smooth via the use of roughness penalties. The FVCAR
model is applied to every single location without considering spatial correlation between traf-
fic flows from different locations. It is intended via comparison to assess the impact on the
accuracy of prediction by the spatial correlations. At each location, it is assumed that the
traffic flow curve in the current day is correlated to the adjacent past p days. Hence, traffic
curves from the past p days are regressed on the curve in the current day for model estimation.
The functional coefficients reflect the continuous change of the correlations between model
input and output over time. The lag p takes the same value as the previous two models (i.e.
NIFTS and FNN) for the comparative study. The rolling-ahead prediction is performed for
five consecutive days.

A sparseVAR model is applied to every single location without taking network-level spa-
tiotemporal correlations of traffic flows into account. The sparseVAR takes transformed FPC
scores as its input to perform prediction. This approach imposes regularity on coefficients
to reduce the complexity of the regression model. Interested readers can refer to Basu and
Michailidis (2015); Efron et al. (2004); Friedman, Hastie and Tibshirani (2010); Tibshirani
(1996) for more details of sparseVAR. The sparseVAR model specification follows BIC cri-
terion (Brockwell and Davis, 2016).
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A traditional pointwise autoregressive (AR) model is also included in the comparative
study. As a benchmark method for time series prediction, it is intended via comparison to see
the difference between pointwise interval-based prediction and functional curve prediction.
The AR model is applied to every single location with no capacity to consider network-level
correlations. The traffic time series with a 24-hour interval as a lag is used to estimate an AR
model, then the model is used to perform traffic prediction for five consecutive days.

4.1.4. Measurement of prediction accuracy. The accuracy of prediction is measured
with six indices, thus assessing the predictive capacity of each approach. The six indices
that measure prediction errors include mean square prediction error (MSPE), median of
MSPE (mMSPE), mean absolute percentage prediction error (MAPPE), median of MAPPE
(mMAPPE), mean error of prediction (MEP) (Aneiros-Pérez and Vieu, 2006), and coefficient
of variation (C.O.V).

The mean square prediction error is a primary indicator of prediction accuracy which
contains combined magnitude of variance and bias due to approach. It is calculated by
MS PE = 1/n

∑n
i=1 (yi − ŷi)2 where yi denotes sample observation, ŷi denotes predicted value

from the model, and n is the sample size. The mean absolute percentage prediction error is to
measure the average difference between observations and predictions in a percentage using
an equation of MAPPE = 1/n

∑n
i=1 |yi − ŷi| /yi × 100%. The median of MSPE as well as the

median of MAPPE indicate the distribution of the corresponding MSPE and MAPPE. The
mean error of prediction is the ratio of MSPE over sample variance of the observed response
which is calculated byMEP =

(∑n
i=1 (yi − ŷi)2

/
n
) /

Var (y). MEP can be seen as a rescaling
of the MSPE. The coefficient of variation is defined as the ratio of the standard deviation to
the mean, i.e. c.o.v = σ/µ. It shows the extent of variability relative to the mean of the corre-
sponding variable which is often expressed as a percentage. It is a standardized measure of
dispersion of predictive error distribution.

4.2. Comparative results.

The comparative outcomes of five approaches with two additional transformation methods
and four ground-truth traffic datasets is summarized in Table 3 and 4. The predictive capacity
of each approach is reflected by the six indices, where each measurement is an average of pre-
dictions for five consecutive days at all locations along eastbound and westbound of Highway
401. The implication of the outcomes can be revealed and interpreted from three perspectives:
(1) comparison between three functional approaches; (2) comparison between three trans-
formation methods; (3) comparison between network-level prediction and location-specific
prediction. Additionally, the prediction outcome with a pointwise interval-based AR method
is also included in the comparison.

4.2.1. Three lines of functional approaches. There are three lines of functional ap-
proaches for traffic prediction, i.e. NIFTS, FNN and FVCAR. The result shows that the
NIFTS approach outperforms both FNN and FVCAR. FVCAR does better than FNN. The
statistical methods outperform the neural network-based method in this comparative study.
The advantages of the NIFTS approach lie in its delicate structure that seamlessly concate-
nates the FPCA transformation, a matrix-variate factor model, and a vector autoregressive
model. This model structure treats the networked traffic flows as one tensor and decomposes
it to capture both network-level co-movement and location-specific traffic flow features. The
spatiotemporal cross-correlations convolute in the model, thus significantly improving accu-
racy of prediction. In contrast, the neural network-based method and FVCAR have no such
clear structure to account for both the network-level co-movement and location-specific traf-
fic features. In addition, it is a consensus that the class of neural network models requires
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huge datasets for its training process in order to have excellent performance in prediction. On
the contrary, a statistical method can be satisfied with relatively small datasets. The compro-
mised performance of FNN in prediction is likely due to the short length of functional traffic
time series. Relatively speaking, statistical models are not so sensitive as neural networks to
the size of dataset.

4.2.2. Three transformation methods. Two additional transformation methods (i.e. dy-
namic FPCA, or wavelet) are employed within the line of the NIFTS approach to replace
FPCA. After transformation, functional time series are converted to either dynamic FPC
scores or wavelet coefficients, then processed by the models in Eq. (3.2), (3.3) and (3.4). The
difference in prediction reflect the impact of transformation on the accuracy of prediction.
The result in Table 3 and 4 indicates that the FPCA transformation excels the dynamic FPCA
and wavelet methods. The NIFTS approach with FPCA transformation shows a stable and
robust predictive capacity for ground-truth datasets in both weekdays and weekends. The dy-
namic FPC transformation exhibits very close capacity to FPCA. The difference in predictive
accuracy due to three transformation methods are likely caused by their respective theoretical
basis and working mechanisms. The wavelet coefficients seem to be less well received by the
matrix factor model for network-level prediction. It is likely because the wavelet method is
inclined to capture local features of functional data with sharp fluctuations.

4.2.3. Network-level vs. location-specific prediction. The NIFTS and FNN approaches
are capable of network-level prediction because both can process network-level functional
time series all at once. They both take spatiotemporal correlations of traffic flows into ac-
count in prediction. On the other hand, the FVCAR approach is suitable for location-specific
prediction. Among statistical methods, Table 3 and 4 show that the NIFTS approach produces
much smaller errors in prediction than the FVCAR, sparseVAR, as well as AR models. The
values of six indices exhibit consistent pattern for both weekday and weekend datasets. The
differences reflect the impact and significance of spatiotemporal correlations on the accuracy
of prediction between network-level prediction and location-specific prediction.

4.2.4. Weekday vs. weekend. The traffic flow pattern during weekends is usually differ-
ent from the ones during weekdays. The traffic flow exhibits two peak periods respectively
in the morning and afternoon during weekdays, but one peak period in the middle of the day
during weekends. All approaches are applied to the traffic data collected from both weekdays
and weekend. The comparative results in Table 3 and 4 show consistent pattern for the pre-
dictive capacity of all approaches. These datasets with different traffic patterns and features
may cross-validate the efficiency and effectiveness of the proposed functional approaches.

Table 3 Error of prediction with two ground-truth datasets (weekday)
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Table 4 Error of prediction with two ground-truth datasets (weekend)

4.2.5. Visualization. Fig. 8, 9, 10 and 11 show visualizations of observed traffic curves
and predicted traffic curves with five approaches and two additional transformation meth-
ods in NIFTS for a weekday and weekend at multiple locations. Due to limited space, only
6 out of 51 locations are selected for presentation in a figure. The observed traffic profiles
vary significantly from one location to another and exhibit location-specific features even
though variation is partly due to stochasticity. The observed traffic profiles are plotted in
black, whereas the predicted curves are plotted in different colors. The curves in red are pre-
dicted by the NIFTS approach with FPC transformation that more closely mimic the observed
traffic profile at each location than other predicted curves. The visualization further verifies
the numerical outcomes in Table 3 and 4.

Fig. 8. Predictions at selected locations on Highway 401 WB (weekday)
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Fig. 9. Predictions at selected locations on Highway 401 EB (weekday)

Fig. 10. Predictions at selected locations on Highway 401 WB (weekend)

Fig. 11. Predictions at selected locations on Highway 401 EB (weekend)
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In summary, from the empirical study based on four ground-truth datasets, the results
indicate that (1) the NIFTS approach outperforms other approaches for network-level predic-
tion; (2) the network-level prediction prevails the local-specific prediction on average; (3) the
FPCA transformation method excels the dynamic FPCA and wavelet methods in line with
the NIFTS approach. Overall, the functional approaches are able to incorporate network-
level co-movement, spatiotemporal correlations of traffic flows, and local traffic features in
the prediction process. It is noteworthy that the NIFTS approach produces the smallest er-
ror in network-level prediction with the FPCA transformation method, but the FNN approach
provides a promising alternative for network-level prediction other than a statistical approach.

5. Discussion and Conclusion.

In this research, we propose functional approaches for network-level traffic prediction, thus
setting a stage beneficial to both road operators and drivers, allowing more advanced oper-
ations and management of road network, traffic demand and real-time route guidance for
connected vehicles in a connected traffic system. To inspect the effectiveness and efficiency
of the proposed approaches, comparisons are carried out between three lines of functional
approaches, three transformation methods, network-level vs. location-specific, and contin-
uous vs. discrete prediction. The result shows that the NIFTS with FPCA transformation
outperforms other approaches. Transformation methods have an impact on prediction. The
network-level prediction outperforms the standalone location-specific prediction with con-
sideration of spatiotemporal cross-correlations in prediction. As an alternative to the NIFTS,
the FNN and FVCAR functional approaches also exhibit competitive prediction capacity.

The advantages of the NIFTS approach lie in its delicate structure that sequentially con-
catenates the FPCA transformation, a matrix-variate factor model, and a vector autoregressive
model. This model structure treats the network traffic flows as one tensor, uses its decompo-
sition capacity to capture both network-level co-movement and location-specific traffic flow
features and convolutes spatiotemporal cross-correlations in the model, thus significantly im-
proving accuracy of prediction. In addition, the NIFTS provides functional prediction si-
multaneously for all locations of interest across the traffic network and is able to provide
a feasible, effective, and efficient way for large-scale network-level continuous-time traffic
prediction.
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