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Abstract We consider the classification of sparse functional data that are often
encountered in longitudinal studies and other scientific experiments. To utilize the
information from not only the functional trajectories but also the observed class labels,
we propose a probability-enhanced method achieved by weighted support vector
machine based on its Fisher consistency property to estimate the effective dimen-
sion reduction space. Since only a few measurements are available for some, even all,
individuals, a cumulative slicing approach is suggested to borrow information across
individuals. We provide justification for validity of the probability-based effective
dimension reduction space, and a straightforward implementation that yields a low-
dimensional projection space ready for applying standard classifiers. The empirical
performance is illustrated through simulated and real examples, particularly in con-
trast to classification results based on the prominent functional principal component
analysis.
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2 F. Yao et al.

1 Introduction and review of relevant topics

In this paper, we consider the classification of sparse functional data by coupling
tools from effective dimension reduction and support vector machine. For ease of
exposition, we begin with a brief review on these topics. Along the review, we also
lay down the motivation for the proposed methodology and describe the connection
to various relevant topics.

1.1 Functional data and principal component analysis

Functional data analysis (FDA) has attracted substantial research interest over the past
decades, owing to vastly emerging complex data consisting of curves or other infinite-
dimensional objects. Originally functional data refer to a sample of fully observed
random trajectories, such as those obtained in automatic monitoring or recording
systems; for a general introduction, see Ramsay and Silverman (2002, 2005). Some
recent contributions for systematically documenting the advances in this area include
the monographs by Ferraty and Vieu (2006) and Horváth and Kokoszka (2012). The
former focused on nonparametric modelling of functional data coupled with suitable
semi-metrics and kernel estimation methods, whilst the latter emphasized inference
developments on the structures and regression relationship for both independent and
dependent types of functional data. We also mention a noticeable collection of differ-
ent topics in FDA edited by Bongiorno et al. (2014), providing versatile perspectives
on infinite-dimensional and operatorial statistics and models. A common approach in
FDA is to treat such curves as realizations of a random process which possesses to cer-
tain extent smoothness. It is convenient to deal with fully observed functions; however,
it is more realistic to assume that the curves are sampled or observed intermittently or
even sparsely, and that the measurements are contaminated by noise. Employing this
powerful methodology to various types of repeated measurements and longitudinal
data, it considerably broadens the reach of FDA. The applications are found in growth
studies (Gervini and Gasser 2005), genetic trait models (Kirkpatrick and Heckman
1989; Lei et al. 2014), gene expression time courses (Müller et al. 2008), e-commerce
and auction bid prices (Jank and Shmueli 2006), and many other types of longitudinal
studies in social and life sciences. Several review articles have provided insightful per-
spectives on connections between functional and longitudinal data (Rice 2004; Zhao
et al. 2004; Müller 2005, 2008).

When the observed data are in the form of trajectories rather than scalars or vec-
tors, dimension reduction is mandatory, and functional principal component (FPC)
analysis (FPCA) has become an important tool to achieve this goal by reducing ran-
dom trajectories to a set of FPC scores. FPCA attempts to characterize the dominant
modes of variation in a sample of random trajectories around an overall mean trend.
There exists an extensive body of literature on FPCA when individuals are measured
at a dense grid of regularly spaced time points. Introduced by Rao (1958) for growth
curves, the basic principle has been studied by Besse and Ramsay (1986), Castro et al.
(1986) and Berkey et al. (1991). Rice and Silverman (1991) discussed smoothing in
this context, Ramsay et al. (2007) introduced a generalized smoothing method using
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Probability-enhanced effective dimension reduction… 3

differential equations, whereas Jones and Rice (1992) emphasized applications. Vari-
ous theoretical properties have been studied by Silverman (1996), Boente and Fraiman
(2000), Kneip andUtikal (2001) andHall andHosseini-Nasab (2006), amongst others.
A relevant topic in FDA is to model the variation in time in addition to amplitude,
caused by different developmental pace or biological clock of each experimental unit.
This has been addressed by time warping or curve alignment (Gasser and Kneip 1995;
Ramsay and Li 1998; Gervini and Gasser 2004; Kneip and Ramsay 2008), and is often
considered as preprocessing for further functional data modelling.

Difficulty arises when applying the FDA methodology based on fully observed
or smoothed curves in the situation of only a few repeated measures available per
experimental unit. To overcome this challenge, Yao et al. (2005a) proposed the prin-
cipal analysis by conditional expectation (PACE) that introduced a unified framework
for sparse/dense designs by borrowing information across the entire sample whilst
estimating the population characteristics, such as the mean, covariance and eigen-
functions/values. For recovering individual trajectories, PACE resembles the best
linear unbiased prediction (BLUP) of linear mixed-effects (LME) models in the con-
text of FPCA. Yao and Lee (2006) proposed an iterative FPCA procedure to reduce
within-subject dependence, whilst Hall et al. (2006) studied the theoretical aspect
for sparse functional data. Another line of approaches dealing with sparse functional
data stemmed from spline basis representations coupled with LME implementation
(Shi et al. 1996; Rice and Wu 2001; Guo 2002), and further extended to wavelet
basis (Morris et al. 2003; Morris and Carroll 2006). James et al. (2000) proposed
a reduced rank model by expressing the eigenfunctions with splines, and stimu-
lated the penalized approach for modelling spatially correlated functions (Zhou et al.
2010).

1.2 Functional regression and classification

Based on these representation methods for functional data, a great deal of research
has been conducted on regression models characterized by inclusion of a functional
predictor or a functional response or both. In view of the close connection to functional
classification, we focus on reviewing the case that linearly associates a scalar response
with a functional predictor,

E(Y |X) = α +
∫
T
{X (t) − μX (t)}β(t)dt, (1)

where Y ∈ R is the scalar response, X is the predictor process that is assumed to reside
in L2(T )with smooth trajectories and the mean functionμX (t), α ∈ R is the intercept
and β ∈ L2(T ) is the squared integrable regression parameter function. The domain T
is often assumed to be a compact interval that denotes time, and may also correspond
to other index variables. A variety of implementations and asymptotic results have
been developed for this functional linear model (Faraway 1997; Cuevas et al. 2002;
Cardot et al. 2003a, b; Yuan and Cai 2010), including optimality considerations (Cai
and Hall 2006; Hall and Horowitz 2007; Cai and Yuan 2012).
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4 F. Yao et al.

An important extension of (1) is the generalized functional linear model (GFLM)
with the response often to be a discrete outcome, such as binomial or Poisson (James
2002; Escabias et al. 2004; Müller and Stadtmüller 2005). With a monotonic and
invertible link function g and a variance function var(Y |X) = V {E(Y |X)}, the GFLM
may be written as

E(Y |X) = g

(
α +

∫
T
{X (t) − μX (t)}β(t)dt

)
, (2)

and has been studied for both known and unknown link/variance functions in Müller
and Stadtmüller (2005). This model framework can be immediately applied to classi-
fication problems with a binary or multi-level response.

Classification is an important problem in FDA, where the data consist of trajec-
tories Xi ∈ L2(T ) and the labels Yi take values on {−1, 1}, i = 1, . . . , n. The
aim is to decide which class a new observation X will be assigned to based on the
collected data. This topic is under rapid development and has been extensively stud-
ied for completely or densely observed functional data. For instance, Ferraty and
Vieu (2003) and Biau et al. (2005) studied the classification from a nonparamet-
ric perspective, treating the fully observed random functions a random variable in
Hilbert space without dimension reduction. Leng and Müller (2006) considered a
FPC-based method for gene expression profiles, whilst Cuevas et al. (2007) explored
the robust aspect via projection-based depth notions. Delaigle and Hall (2012) pro-
posed a centroid classifier based on a reduced representation via FPC scores or partial
least squares.

By contrast, the research on classification for sparse functional data is rela-
tively scanty, when only a few measurements are available for some, even all,
individuals. James and Hastie (2001) suggested an extension of linear discrimi-
nant analysis for such data using a finite-dimensional spline approximation. Müller
(2005) conducted functional principal component analysis coupled with a logistic
regression. Wu and Liu (2013) applied support vector machines after performing
functional principal component analysis. Unfortunately, none of these methods uti-
lized the relationship between the observed trajectories and the associated labels
whilst conducting dimension reduction. In this paper, we will tackle classification
of sparsely observed functional data, not only utilizing the information of the predic-
tor process but also considering the response variable to improve the classification
accuracy.

1.3 Effective dimension reduction

Our goal is to properly make use of the joint information for classifying sparse
functional data. It is known that the effective dimension reduction (EDR) methods,
originated from multivariate regression, have been proven useful in this regard. It is
attractive to find the most effective directions β1, . . . , βK based on both the covariate
X and the response Y , where K is the unknown structural dimension. Such direction
functions β1, . . . , βK are also called index functions, and the model is referred to as
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Probability-enhanced effective dimension reduction… 5

functional index model, with an unknown link function g and the model error ε,

Y = g (〈β1, X〉, . . . , 〈βK , X〉; ε) , (3)

whilst K = 1 corresponds to a single index model. This is the general form of func-
tional regression without structure assumption, whilst the functional linear model is a
special case when K = 1 and g is linear.

One may conduct direct statistical estimation of the index and link functions under
the general form (3), for example, Xia et al. (2002) proposed the minimum average
variance estimation approach based on kernel methods for multivariate data. Instead
of estimating β1, . . . , βK and g altogether, often it is of more interest to learn the low-
dimensional projections 〈β1, X〉, . . . 〈βK , X〉 that form a sufficient statistic, which is
the aim of EDR-based methods, i.e., characterizing the so-called EDR space SY |X =
span(β1, . . . , βK ), also known as the central subspace (Cook 1998). Thus, one major
advantage of EDRmethods is “link-free” (Duan and Li 1991). Pioneered by Li (1991)
that proposed the sliced inverse regression (SIR) using the information concerning
the inverse conditional mean E(X |Y ), Cook and Weisberg (1991) considered the
inverse variance estimation utilizing the information of var(X |Y ), Li (1992) dealt
with the Hessian matrix of the regression curve, Chiaromonte et al. (2002) modified
sliced inverse regression for categorical predictors, Li and Wang (2007) worked with
empirical directions, and Zhu et al. (2010) proposed cumulative slicing estimation to
improve upon SIR.

Since dimension reduction is particularly useful for modelling functional data that
reside in an infinite-dimensional space, Ferré and Yao (2003) applied the SIR to com-
plete or dense functional data, based on which Li and Hsing (2010) proposed a test to
decide the dimensionality of EDR space. Besides EDRmethods, James and Silverman
(2005) and Chen et al. (2011) estimated the index functions β1, . . . , βK and additive
link function g1, . . . , gK jointly under the form

g(〈β1, X〉, . . . 〈βK , X〉; ε) = β0 +
K∑

k=1

gk(〈βk, X〉) + ε.

However, these existingmethods are not applicable to sparse functional data. Recently,
Jiang et al. (2014) proposed an inverse regression method for sparse functional data by
estimating the inverse conditional mean functions with a two-dimensional smoother
that requires considerable computation. Inspired by cumulative slicing estimation
(CUME) for multivariate data (Zhu et al. 2010), Yao et al. (2015) proposed to borrow
information across subjects via a one-dimensional smoother, named the functional
cumulative slicing (FCS), which is closely related to the proposed method in this
paper. The EDR methods are intended for continuous response and have been rarely
used for classification problems due to few distinct response values. In other words,
homogeneity in partitioning Y values fails to capture sufficient variability to estimate
the EDR space. In this paper, we investigate this problem by exploring the idea of
the support vector machine (SVM) that finds a separation boundary between two
classes.
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6 F. Yao et al.

1.4 Support vector machine

The SVM originates from the classical Perceptron algorithm (Rosenblatt 1958, 1962)
that is one of the first binary linear classifiers and is capable of performing online
learning. Along this line, Vapnik and Lerner (1963) introduced the generalized portrait
algorithm. With the kernel trick (Aronszajn 1950), the SVM is a nonlinear general-
ization of the generalized portrait algorithm. Aizerman et al. (1964) introduced the
geometric interpretation of the kernel as inner product in a feature space implicitly
defined by the kernel. Cover (1965) introduced the concept of large-margin hyper-
planes. Close to its current form, the SVM was first introduced by Boser et al. (1992).
Its soft margin version was introduced by Cortes and Vapnik (1995). For a detailed
exposition of the SVM, interested readers may read Vapnik (1995, 1998), Cristianini
and Shawe-Taylor (2000) and references therein.

As an auxiliary tool, the SVM paradigm provides a geometric interpretation of
differentiating two classes by a hyperplane with maximal separation margin in the
input space. Owing to its flexibility and capability in dealing with high-dimensional
data, SVM classifier received considerable attention and was also generalized from
binary to multicategory settings, see Weston and Watkins (1999), Bredensteiner and
Bennett (1999), Crammer and Singer (2001), Lee et al. (2004), Wang and Shen (2006,
2007), Liu and Shen (2006), Wu and Liu (2007), Liu and Yuan (2011), Chang et al.
(2011), He et al. (2012) and references therein.

In the standard SVM, observations from different classes are weighted equally
whilst training the classifier. However, this may not be optimal especially in the unbal-
anced case with one class dominating the other. Thus motivated, Lin et al. (2004)
proposed weighted SVM (WSVM) by weighting observations from different classes
with different weights in the training process and established its Fisher consistency.
Based on the WSVM’s Fisher consistency, Wang et al. (2008) proposed a probability
estimation scheme to estimate the conditional probability for each new observation
belonging to each class. Particularly inspired from this probability estimation scheme
using the WSVM to address the aforementioned homogeneity issue in partitioning a
binary response, Shin et al. (2014) proposed a probability-enhanced dimension reduc-
tion method for multivariate data.

In this paper, we target at functional data and propose an integrated classifica-
tion procedure called probability-enhanced functional cumulative slicing (PEFCS)
for sparse functional data. The key idea is, instead of directly partitioning the response
values, to conduct functional cumulative slicing based on ranking the underlying prob-
abilities p(X) = p{Y = 1|X (·)} that are obtainable from the WSVM. The resultant
slices would have sufficient heterogeneity to capture the variability and recover the
EDR space. As we illustrate later, the PEFCS adopts a pooling strategy combining
information from all individuals to handle sparse functional data.

The rest of article is organized as follows. In Sect. 2, we describe the proposed
probability-enhanced method coupled with the functional cumulative slicing, whilst
Sect. 3 presents an estimation procedure using sparse functional data. Section 4 pro-
vides a simulation study, and Sect. 5 offers three real data examples. Concluding
remarks are given in Sect. 6.
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Probability-enhanced effective dimension reduction… 7

2 Probability-enhanced functional cumulative slicing

The data considered consist of random trajectories that are independent realizations of
a smoothprocess X (t) that is definedon a compact intervalT andbelongs to a separable
Hilbert space H ≡ L2(T ) equipped with 〈 f, g〉 = ∫

T f (t)g(t)dt and || f ||H =
〈 f, f 〉1/2, whilst the binary response Y takes values on {−1, 1}. For convenience,
we assume that E{X (t)} = 0, and denote the covariance function by Σ(s, t) =
E{X (s)X (t)}, i.e., Σ = E(X ⊗ X), where the operator ⊗ is the rank one operator on
H defined as (u ⊗ v)w = 〈u, w〉v. Note that Σ defines a Hilbert–Schmidt operator
on H , which maps f to (Σ f )(s) = ∫

T Σ(s, t) f (t)dt . By Mercer’s theorem, there is
an orthogonal expansion

Σ(s, t) =
∞∑
j=1

α jφ j (s)φ j (t), i.e., Σ =
∞∑
j=1

α jφ j ⊗ φ j ,

with a complete orthonormal system formed by eigenfunctions {φ1, φ2, . . .} with cor-
responding eigenvalues α1 > α2 > · · · > 0 satisfying

∑∞
j=1 α j < ∞. The proposed

procedure involves covariance estimation. It is common to assume that

Assumption 1 X has finite fourth moment,
∫
T E{X4(t)}dt < ∞.

We briefly review the EDRmethods for functional data that have inspired the proposed
probability-enhanced approach. As a close comparison, we first look at the functional
SIR proposed by Ferré and Yao (2003) that targets the EDR space through ΛSIR =
var{E(X | Y )}, the operator associated with the covariance of the inverse mean. It
partitions the range of Y into a user-specified partition of S slices I1, . . . , IS , where
Is denotes the interval (ỹs−1, ỹs] with −∞ = ỹ0 < ỹ1 < · · · < ỹS = +∞. Observe
that

E(X | Y ∈ Is) = E{X I (Y ∈ Is)}
p(Y ∈ Is)

≡ ms

ps
,

where I (A) denotes the indicator function on a set A. Then, functional SIR approxi-
mates ΛSIR by its sliced version Λ0 = ∑S

s=1 p
−1
s ms ⊗ ms . From multivariate sliced

inverse regression, it is known that the number of slices is associated with a bias-
variance tradeoff. The number of slices must be larger than the structural dimension
to fully characterize SY |X , but if it is too large, the variance will increase as ps will
be close to zero. This is to say that applying the method of Ferré and Yao (2003) to
sparsely observed functional data is practically infeasible, since the combination of
the sparsely observed X and the delicate need of choosing a sufficiently large number
of slices would result in too few observations in each slice with which to estimate Λ0.

To avoid the nontrivial selection of the number of slices inmultivariate sliced inverse
regression, Zhu et al. (2010) observed that for a fixed ỹ, using two slices I1 = (−∞, ỹ]
and I2 = (ỹ,+∞) would maximize the use of data and minimize the variability in
each slice. Viewing the limitation of the functional SIR for sparse functional data, the
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8 F. Yao et al.

choice of cumulative slicing is thus critical to ensure sufficient number of observations.
Yao et al. (2015) extended this principle based on a two-slice scheme,

m(·, ỹ) = E{X (·)I (Y ≤ ỹ)},

across all possible values ỹ in the range of Y to maximize the utility of the data. As a
consequence, the EDR space is characterized by

Λ(s, t) = E{m(s, Ỹ )m(t, Ỹ )},

where Ỹ is an independent copy of Y . Unfortunately, for functional classification,
homogeneity exists owing to only two possible slices based on a binary response.
Thus, at most one direction of SY |X can be recovered. To overcome this difficulty for
multivariate data, Shin et al. (2014) proposed to construct slices based on the condi-
tional probabilities p(X) = p(Y = 1|X), where X denotes a p-dimensional vector
of multivariate covariates. This introduced an equivalent central subspace, denoted
by Sp(X)|X, which is the intersection of the spaces spanned by all K × p matrices B
satisfying p(X) ⊥ X|B
X.

Our goal is to benefit from data pooling with the functional cumulative slicing and
enhance the EDRestimation based on the underlying conditional probability for classi-
fying sparsely observed functional data. Similar to the multivariate case, we define the
central subspace Sp(X)|X based on p(X) = p{Y = 1|X (·)} as the intersection of spaces
spanned by all sets of {β1, . . . , βK } satisfying p(X) ⊥ X |〈β1, X〉, . . . , 〈βK , X〉. We
then establish the following equivalence between the central subspaces based on the
conditional probability and that based on the binary response. Given X (t) = x(t), the
binary response Y can be equivalently expressed as a function satisfying

Y {p(x), ε∗} =
{
1, ε∗ ≤ p(x)
−1, otherwise,

where ε∗ is a random noise ε∗ ∼ U (0, 1) and independent of X (t).

Proposition 1 p(X) contains the same information as X to predict Y , i.e., SY |X=
Sp(X)|X .

This proposition is a functional version of Lemma 1 in Shin et al. (2014), and its proof
is given in the “Appendix”. Hence wemay estimate Sp(X)|X instead of SY |X to improve
lack of heterogeneity in partitioning a binary response. As a result, this extends the
idea of probability-based slicing in Shin et al. (2014) to functional data.

In light of foregoing discussion, we partition the range of p(X) instead of Y . To
maximize the data usage, for a fixedπ ∈ (0, 1),we consider only two slices I1 = (0, π ]
and I2 = (π, 1) to have sufficient observations within each slice, which approximates
the unconditional mean

m(t, π) = E[X (t)I {p(X) ≤ π}].
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Probability-enhanced effective dimension reduction… 9

To recover the EDR space, it is necessary to run π across the support of p(X̃), with
X̃ being an independent copy of X . We define an operator with the kernel function as
follows,

Λ(s, t) = E[m{s, p(X̃)}m{t, p(X̃)}w{p(X̃)}], (4)

where w{p(X̃)} is a known non-negative weight function with a naive choice w ≡ 1.
To establish the validity of (4), we impose a linearity assumption.

Assumption 2 For any function h ∈ H , there exist constants c0, . . . , cK ∈ R such
that

E(〈h, X〉|〈β1, X〉, . . . , 〈βK , X〉) = c0 +
K∑

k=1

ck〈βk, X〉,

where β1, . . . , βK are the effective directions that are linearly independent functions
in H and K is the structure dimension.

This linearity assumption is the functional version of condition 3.1 in Li (1991) and is
satisfied when X follows an elliptically contoured distribution. This is more general
than, but bears a close connection to, a Gaussian process (Li and Hsing 2010).

Theorem 1 Under Assumptions 1 and 2, the linear space spanned by {Σβ1, . . . ,

ΣβK } contains the linear space spanned by {m(t, π) : π ∈ (0, 1)}.
Hence, for any c ∈ H orthogonal to span(Σβ1, . . . , ΣβK ), we have 〈c,Λc〉 = 0, i.e.,

range(Λ) ⊆ span(Σβ1, . . . , ΣβK ).

On the other hand, if Λ is associated with K positive eigenvalues, the corresponding
eigenfunctions span the same space as span(Σβ1, . . . , ΣβK ). Note that, although the
individual functions βk are not identifiable, our goal is to estimate Sp(X)|X = SY |X =
span(β1, . . . , βK ) as a whole. For specificity, we regard the eigenfunctions of Σ−1Λ

associated with the K largest positive eigenvalues as the index functions β1, . . . , βK in
the sequel. We refer to the estimation of EDR space based on conditional probabilities
as probability-enhanced functional cumulative slicing (PEFCS).

Since the covariance operator Σ is Hilbert–Schmidt, its inverse Σ−1 is not well
defined from H to H . Analogous to Ferré and Yao (2005), we restrict the domain on

R−1
Σ =

⎧⎨
⎩b ∈ H :

∞∑
j=1

α−1
j 〈b, φ j 〉φ j < ∞, b ∈ RΣ

⎫⎬
⎭ ,

where RΣ is the range of Σ . Then, Σ is a one-to-one mapping from R−1
Σ ⊂ H

onto RΣ , and its inverse is Σ−1 = ∑∞
j=1 α−1

j φ j ⊗ φ j . This is similar to finding a
generalized inverse of a matrix when it is not directly invertible. We denote the j th
eigenscore of X by ξ j = 〈X, φ j 〉 and assume that
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10 F. Yao et al.

Assumption 3

∞∑
j=1

∞∑
l=1

α−2
j α−1

l E2(E[ξ j I {p(X) ≤ p(X̃)}|p(X̃)]E[ξl I {p(X)≤ p(X̃)}|p(X̃)])<∞.

Proposition 2 Under Assumptions 1–3, the eigenspace associated with the K non-
zero eigenvalues of Σ−1Λ is well defined in H.

This proposition guarantees the validity of the proposed PEFCS, which is a direct
analogue to Theorem 4.8 in He et al. (2003) and Theorem 2.1 in Ferré and Yao (2005).

3 Estimating EDR space from sparse functional data

In light of the equivalence SY |X=Sp(X)|X , it suffices to know whether p(Xi ) ≤ π for
an arbitrary 0 < π < 1, i = 1, . . . , n. Lin et al. (2004) showed that the solution
to the WSVM has an important property, the Fisher consistency. Hence, by training
a sequence of WSVMs for different values of π , we are able to consistently esti-
mate I {p(Xi ) ≤ π}. The trajectories Xi are observed intermittently with noise, and
collected in the form of (ti j ,Ui j ),

Ui j = Xi (ti j ) + εi j , j = 1, . . . , ni , i = 1, . . . , n,

where the i.i.d. measurement error εi j satisfies Eεi j = 0 and var(εi j ) = σ 2
ε , and the

number of observations ni may be small for some or all subjects. Using FPCA for
representation, we denote the FPC scores by

ξik =
∫
T
Xi (t)φk(t)dt, i = 1, . . . , n, k = 1, 2, . . . ,

which equivalently express the trajectories Xi in the WSVM. Unlike the predictors
in multivariate case, the FPC scores are not observable. We adopt the PACE method
specifically designed for sparse functional data (see Yao et al. 2005b, for details).
In practice, we suggest to use a sufficient number of FPCs as the initial truncation
parameter s0, so that nearly 100% of the total variation is explained, and denote the
resultant PACE estimates by

X̂i (t) =
s0∑
k=1

ξ̂ik φ̂k(t), i = 1, . . . , n.

Let K (·, ·) : H×H → R be a non-negative definite kernel function andFK denote
the reproducing kernel Hilbert space (RHKS, Wahba 1990) generated by the kernel
K . The kernel WSVM estimates the decision function gπ (·) for any fixed π ∈ (0, 1)
by solving
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Probability-enhanced effective dimension reduction… 11

min
gπ∈FK

(1 − π)
∑
i :Yi=1

H1{Yi gπ (X̂i )} + π
∑

i :Yi=−1

H1{Yi gπ(X̂i )} + λ

2
||gπ ||2FK

, (5)

where H1(u) = max{1−u, 0} is the hinge loss function, ||gπ ||2FK
is the penalty term to

regulate the complexity of gπ , andλ > 0 is a tuning parameterwhich controls the trade-
off between data-fit andmodel complexity. By the representer theorem (Kimeldorf and
Wahba 1971), the solution to (5) has a finite representation

gπ (x) = dπ + λ−1
n∑

i=1

di,πYi K (x, X̂i )

for x ∈ H , and

||gπ ||2FK
=

n∑
i=1

n∑
j=1

di,πd j,πYiY j K (X̂i , X̂ j ).

Thus, solving the optimization problem

min
dπ ,d1,π ,...,dn,π

(1 − π)
∑
i :Yi=1

H1{Yi gπ (X̂i )} + π
∑

i :Yi=−1

H1{Yi gπ (X̂i )}

+ 1

2λ

n∑
i=1

n∑
j=1

di,πd j,πYiY j K (X̂i , X̂ j ) (6)

provides an estimate sign(ĝπ(·)) for sign{p(x) − π}, i.e.,

Î {p(x) < π} = 2−1{1 − sign(ĝπ(x))}.

More details can be found in Lin et al. (2004) and Shin et al. (2014).
We next estimate the unconditional mean m(t, π) = E[X (t)I {p(X) ≤ π}] using

the strategy of cumulative slicing and borrowing information across subjects. We use
a local linear estimator m̂(t, π) = â0 (Fan and Gijbels 1996), given by

min
a0,a1

n∑
i=1

ni∑
j=1

[Ui j Î {p(X̂i ) ≤ π} − a0 − a1(ti j − t)]2K1

(
ti j − t

h1

)
, (7)

where X̂i is the PACE estimate of Xi , K1 is a non-negative and symmetric univariate
kernel density, and h1 = h1(n) is the bandwidth to control the amount of smoothing.
We follow the suggestion of ignoring the dependency amongst the data from the same
individual (Lin and Carroll 2000), and use leave-one-curve-out cross-validation to
select h1 (Rice and Silverman 1991). To estimate Λ(s, t) in (4) by running π across
{p(X̂i ) : i = 1, . . . , n}, it only requires the ranking of such values. One may simply
use a dense set 0 < π1 < · · · < πm < 1, and take the centre of the nearest interval
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containing p(X̂i ) as a surrogate, denoted by p̃(X̂i ). Then, an estimator of the kernel
function Λ(s, t) is

Λ̂(s, t) = 1

n

n∑
i=1

m̂{s, p̃(X̂i )}m̂{t, p̃(X̂i )}w{ p̃(X̂i )}. (8)

For the covariance operator Σ , following Yao et al. (2005b), define Ci (ti j , til) =
Ui jUil that satisfies E{Ci (ti j , til)} = Σ(ti j , til) + σ 2

ε Ii j , where Ii j = 1 if i = j
and 0 otherwise. Thus, we remove the diagonal raw covariances and the local linear
estimator is given by Σ̂(s, t) = b̂0, solving

min
b0,b1,b2

n∑
i=1

ni∑
j �=l

{Ci (ti j , til) − b0 − b1(ti j − s) − b2(til − t)}2

×K2

(
ti j − s

h2
,
til − t

h2

)
, (9)

where K2 is a non-negative and symmetric bivariate kernel density and h2 is the
bandwidth also chosen by the leave-one-curve-out cross-validation. Then, we use a
sequence of finite rank operator estimators Σ−1

sn = ∑sn
j=1 α−1

j φ j ⊗ φ j (respectively

Σ̂−1
sn = ∑sn

j=1 α̂−1
j φ̂ j ⊗ φ̂ j ) to approximate the unbounded Σ−1. Hence, the eigen-

functions associated with the K largest non-zero eigenvalues of Σ̂−1
sn Λ̂ are obtained

as the estimates of {βk}k=1,...,K .
For completely observed Xi , the estimation procedure is simpler, and the quantities

are estimated by their sample moments,

m̂(t, π) = n−1
n∑

i=1

Xi (t) Î {p(Xi ) ≤ π},

Σ̂(s, t) = n−1
n∑

i=1

Xi (s)Xi (t),

whilst Λ̂ remains the same as (8). For densely observed Xi , the error introduced by
individual smoothing has been shown asymptotically negligible, thus is equivalent to
the case of completely observed Xi (Hall et al. 2006). To select the tuning parame-
ter λ in WSVM, the structural dimension K and the truncation sn , we choose them
together by minimizing the (cross-validated) classification error in our simulated and
real examples since classification is the primary goal.

4 Simulations

As a dimension reduction tool, the proposed PEFCS projects the functional data onto a
feature space, in a similar spirit of FPCA. In this section, we apply different classifiers
to the reduced data in such feature spaces obtained from either PEFCS or FPCA . To be
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specific, we consider the linear discriminant analysis (LDA), quadratic discriminant
analysis (QDA), the logistic additive regression, and the centroid method proposed by
Delaigle and Hall (2012). These classifiers are estimated from a training sample based
on projected data 〈ψ̂, Xi 〉, whereψ denotes the EDR direction βk or the eigenfunction
φk . For the dense setting, the projections are well approximated by integrals on the
observed times. For the sparse setting, we substitute with the PACE estimate X̂i .
To assess the classification error, we generate a validation sample and compute the
predicted class of Y ∗ based on 〈ψ̂, X∗〉, where X∗ is the underlying trajectory in the
validation sample. We report the classification error that is minimized jointly over
the tuning parameter λ in WSVM, the structural dimension K and the truncation sn .
Specifically the FPCA is implemented using the software package PACE available at
http://www.stat.ucdavis.edu/PACE/, and the truncation is also chosen by minimizing
the classification error.

We generate a training sample of n = 200 in each Monte Carlo run from the
process Xi (t) = ∑50

j=1 ξi jφ j (t) for t ∈ [0, 10], where φ j (t) = 5−1/2 cos(π t j/5)

for odd j and φ j (t) = 5−1/2 sin(π t j/5) for even j and ξi j is independently dis-
tributed as N (0, j−1.5). In the sparse setting, the number of observations ni is i.i.d.
and uniform over {10, 11, . . . , 20}, the observation times Ti j are i.i.d. from U [0, 10],
and the measurement error εi j is i.i.d. from N (0, 0.1). In the densely observed func-
tional data, Ti j = 0.1( j − 1) for j = 1, . . . , 101. The EDR directions used are
β1(t) = ∑50

j=1 b jφ j (t) for b j = 1 if j = 1, 2 and b j = ( j − 2)−3 for j = 3, . . . , 50,
and β2(t) = √

3/10(t/5 − 1). We consider the following single and multiple index
models:

Model I: f (X) = sin(π〈β1, X〉/4),
Model II: f (X) = exp(〈β1, X〉/2) − 1,

Model III: f (X) = sin(π〈β1, X〉/3) + exp(〈β2, X〉/3) − 1,

Model IV: f (X) = arctan(π〈β1, X〉) + exp(〈β2, X〉/3) − 1.

Then, the class labels are generated by Y = sign{ f (X)+ε}, where themodel error ε is
i.i.d. from N (0, 0.1) for all models. In the implementation of our PEFCS, we choose
100 equally distanced points between 0 and 1 as the probability candidate set, i.e.,
{πk = k/100 : k = 1, . . . , 100}. A validation sample of N = 500 is generated from the
same setting, and 100 Monte Carlo runs are used to assess the expected classification
error. We report the classification errors obtained from different classifiers based on
projections onto the EDR space or the eigenspace for both sparse and dense settings
in Table 1. We can see that all four classifiers based on the proposed PEFCS improve
or are comparable to the classification results over those based on the FPCA, amongst
which the centroid method based on EDR projections has the most improvements and
appears to outperform other classifiers. It is also noted that the structural dimension
K in all cases has been correctly identified when the average classification error is
minimized.
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Table 1 The average classification error with the standard error (in parenthesis) in percentage (%) obtained
from 100 Monte Carlo repetitions

Model Method LDA QDA Centroid Logistic

Sparse

I PEFCS 13.5 (0.18) 13.5 (0.20) 12.9 (0.19) 13.6 (0.19)

FPCA 13.4 (0.21) 14.1 (0.25) 18.0 (0.54) 14.3 (0.24)

II PEFCS 17.7 (0.22) 17.8 (0.23) 17.0 (0.22) 17.7 (0.23)

FPCA 17.6 (0.23) 18.2 (0.21) 22.1 (0.52) 17.6 (0.29)

III PEFCS 15.8 (0.30) 15.9 (0.33) 15.3 (0.24) 15.6 (0.32)

FPCA 16.1 (0.29) 17.5 (0.30) 21.1 (0.78) 16.5 (0.50)

IV PEFCS 8.03 (0.26) 8.59 (0.24) 7.41 (0.23) 8.81 (0.25)

FPCA 7.92 (0.20) 8.62 (0.21) 14.5 (0.49) 8.92 (0.29)

Dense

I PEFCS 12.6 (0.18) 12.4 (0.18) 12.1 (0.16) 12.4 (0.17)

FPCA 12.7 (0.19) 12.9 (0.19) 15.2 (0.26) 12.8 (0.19)

II PEFCS 17.2 (0.20) 16.7 (0.18) 16.3 (0.18) 16.9 (0.18)

FPCA 17.1 (0.18) 17.2 (0.17) 18.6 (0.22) 17.0 (0.17)

III PEFCS 14.9 (0.23) 14.6 (0.22) 14.3 (0.21) 14.2 (0.22)

FPCA 14.8 (0.20) 15.0 (0.21) 17.1 (0.22) 16.1 (0.18)

IV PEFCS 7.26 (0.17) 7.02 (0.14) 6.46 (0.13) 6.98 (0.14)

FPCA 7.10 (0.16) 7.31 (0.16) 11.7 (0.28) 6.83 (0.15)

5 Data examples

5.1 Berkeley growth study

Studies of human growth dynamics are an important topic in biological and medical
applications that have profound impact for many years. This example concerns the
Berkeley growth study originally published in Tuddenham and Snyder (1954) and
analyzed in (Ramsay and Silverman 2005). The dataset contains 93 children’s height
trajectories, of which 54 are girls and 39 are boys. The height from each child was
measured at quarterly from ages 1 to 2, annually from 2 to 8, and semiannually from
8 till 18, yielding 31 measurements per child. Gender serves as a natural class label.
The interpolated trajectories for each gender are shown in Fig. 1. For illustration
purpose, besides analyzing the original data, we also randomly sample the number
of observations ni from {12, . . . , 15} with the times ti j randomly chosen from the
original measurement times with equal probability to construct the sparsely observed
data. To assess the classification error, we randomly split dataset into training and
validation sets of sizes 75 and 18, respectively, and report in Table 2 the minimized
average classification error computed from 20 random partitions. It is seen that the
all four types of PEFCS-based classifiers consistently outperform those based on the
FPCA for both the original and sparse settings, though the QDA is clearly suboptimal.
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Fig. 1 Height trajectories of 39 boys (top) and 54 girls (bottom) from the Berkeley growth data

Table 2 The average classification error (×100%), with its standard error in parenthesis obtained from 20
random partitions of the Berkeley growth data

Data Method LDA QDA Centroid Logistic

Original PEFCS 3.06 (0.75) 3.56 (0.74) 3.33 (0.85) 3.50 (0.83)

FPCA 5.58 (1.53) 5.72 (1.29) 5.56 (1.03) 5.50 (0.75)

Sparse PEFCS 4.33 (0.85) 4.34 (0.94) 4.39 (1.00) 4.37 (0.87)

FPCA 8.61 (1.37) 9.83 (1.47) 9.33 (1.11) 8.72 (1.61)
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5.2 Spinal bone density data

We next study the bone density data investigated by James and Hastie (2001), where
only 2–4 measurements of the bone density are available at widely different times for
280 individuals. It also contains the gender and ethnicity information, such as Asian,
Black, Hispanic or White, with each individual belonging to one of these ethnicity
groups. To remove the confounding effect between gender and ethnicity, we consider
the gender classification for 52 Hispanic individuals, of which 27 are female and 25
male. The sparsely observed data are shown in Fig. 2. We again randomly split the
data into training and validation sets of sizes 42 and 10 for assessing the classification.

Fig. 2 Spinal bone density data for Hispanic female (top) and male (bottom)
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Table 3 The average classification error (×100 %), with its standard error in parenthesis obtained from
20 random partitions of the spinal bone density data

Method LDA QDA Centroid Logistic

PEFCS 30.0 (4.10) 30.5 (4.00) 22.5 (2.80) 30.0 (4.35)

FPCA 39.5 (4.00) 38.0 (3.60) 31.5 (3.27) 38.5 (3.93)

Fig. 3 Logarithm-transformed measurements of serum bilirubin for the patients that are alive (top) or dead
(bottom) beyond 10 years from the primary biliary cirrhosis data

Results over 20 random partitions are reported in Table 3. From theminimized average
classification error over 20 random partitions, we see that the proposed method is
superior to the FPCA across all four classifiers.
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Table 4 The average classification error (×100 %), with its standard error in parenthesis obtained from
20 random partitions of the primary biliary cirrhosis follow-up data

Method LDA QDA Centroid Logistic

PEFCS 21.5 (1.31) 22.9 (1.08) 16.6 (11.8) 20.9 (1.15)

FPCA 24.6 (1.17) 24.4 (1.15) 19.9 (1.57) 23.1 (1.02)

5.3 Primary biliary cirrhosis follow-up data

The third example concerns the primary biliary cirrhosis (PBC) follow-up data that
were also sparsely observed, see Appendix D in Fleming and Harrington (1991) for
description. Different from the original PBC data, the follow-up data contain multiple
measurements for 312 patients at sparse and irregular times. Also included is the
survival status, of which 143 lived beyond 10 years, 140 died within 10 years and
29 is in the transplantation status. The serum bilirubin has been measured in mg/dl
for each patient at different times during the first 9 years, whilst we are interested
in distinguishing the death or alive status (thus excluding patients in transplantation
status) based on the longitudinally measured bilirubin that are logarithm-transformed
and shown in Fig. 3. Similar to previous examples, we assess the classification error
using 20 random partitions, each with 227 and 56 patients in training and validation
sets. The minimized classification error reported in Table 4 again demonstrates the
improvement via the proposed PEFCS method across all four classifiers considered.

6 Concluding remarks

In this article, we proposed a new method combining the weighted support vector
machine and functional cumulative slicing for classifying sparsely observed functional
data. The probability-based slicing tackles the lack of heterogeneity for estimating
the EDR space when the response in classification problem is binary. For handling
the sparsely observed functions, we adopt the cumulative slicing strategy to borrow
information across subjects. It is straightforward to apply commonly used classifiers to
the reduced data projected onto the resultant EDR space, which has been demonstrated
through extensive numerical examples to be superior to those based on FPCAmethod.
The selection of some important parameters, including the tuning parameter in the
WSVM, the structural dimension and the truncation for covariance inverse, remains
an open problem for further investigation.

Appendix: Technical details

Proof of Proposition 1 Theproof is similar to that ofLemma1 inShin et al. (2014).We
first show Sp(X)|X ⊆ SY |X , which is equivalent to show that, for any {βk}Kk=1 such that
X ⊥ p(X) | 〈β1, X〉, . . . , 〈βK , X〉, we have X ⊥ Y | 〈β1, X〉, . . . , 〈βK , X〉. Recall
Y {p(x), ε∗} is 1 if ε∗ ≤ p(x) and−1 otherwise. As a consequence, X ⊥ Y | p(X) and
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X ⊥ Y | {p(X), 〈X, 〈β1, X〉, . . . , 〈βK , X〉}. Since X ⊥ p(X) | 〈β1, X〉, . . . , 〈βK , X〉,
we obtain X ⊥ Y | 〈β1, X〉, . . . , 〈βK , X〉 owing to Proposition 4.6 of Cook (1998).

To show SY |X ⊆ Sp(X)|X is equivalent to show Y ⊥ X | 〈β1, X〉, . . . , 〈βK , X〉 ⇒
X ⊥ p(X) | 〈β1, X〉, . . . , 〈βK , X〉 for any {βk}Kk=1. Since Y ⊥ X | 〈β1, X〉, . . . , 〈
βK , X〉, we have E(Y |X) = E(Y |〈β1, X〉, . . . , 〈βK , X〉) and p(X) = E((Y +
1)/2|X) = E(Y |〈X, βk〉k=1,...,K )/2+1/2. Hence X ⊥ p(X) | 〈β1, X〉, . . . , 〈βK , X〉.

��
Proof of Theorem 1 It suffices to show, if h ⊥ span(Σβ1, . . . , ΣβK ), then 〈h,m(·, π)〉
= 0. Since X ⊥ p(X) | 〈β1, X〉, . . . , 〈βK , X〉,

〈h,m(·, π)〉 = E (E[〈h, X I {p(X) ≤ π}〉 | 〈β1, X〉, . . . , 〈βK , X〉])
= E (E[〈h, X〉 | 〈β1, X〉, . . . , 〈βK , X〉]E[I {p(X) ≤ π} |

× 〈β1, X〉, . . . , 〈βK , X〉) .

Thus, it is enough to show that E(〈h, X〉|〈β1, X〉, . . . , 〈βK , X〉) = 0 with probability
1, which is implied by E{E2(〈h, X〉|〈β1, X〉, . . . , 〈βK , X〉)} = 0. Invoking the linear-
ity condition in Assumption 2 and E(〈βk, X〉〈h, X〉) = 〈h,Σβk〉, for some constants
c0, . . . , cK ,

E{E2(〈h, X〉|〈β1, X〉, . . . , 〈βK , X〉)}

= E

{
E (〈h, X〉|〈β1, X〉, . . . , 〈βK , X〉)

(
c0 +

K∑
k=1

ck〈βk, X〉
)}

= E

{
E

(
c0〈h, X〉 +

K∑
k=1

ck〈βk, X〉〈h, X〉
∣∣∣∣〈β1, X〉, . . . , 〈βK , X〉

)}

= c0E(〈h, X〉) +
K∑

k=1

ck〈h,Σβk〉 = 0.

��
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