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Abstract. In this note, we prove a blow up formula for Gysin pull-back of cycles by the zero section

of a cotangent bundle (cf. Lemma 3.3). A special case of this formula is used in the proof of the twist
formula for ε-factors [6].

1. Preliminaries on C-transversal condition

Definition 1.1. Let X, Y and W be smooth schemes over a field k. We denote by T˚XX Ď T˚X the
zero section of the cotangent bundle T˚X of X. Let C be a conical closed subset of T˚X, i.e., a closed
subset which is stable under the action of the multiplicative group Gm.

(1) p[2, 1.2]q Let h : W Ñ X be a morphism over k. We say that h is C-transversal at w P W if the
fiber

`

pC ˆX W q X dh´1pT˚WW q
˘

ˆWw is contained in the zero-section T˚XXˆXW Ď T˚XˆXW ,
where dh : T˚X ˆX W Ñ T˚W is the canonical map. We say that h is C-transversal if h is C-
transversal at any point of W .

If h is C-transversal, we define h˝C to be the image of C ˆX W under the map dh : T˚X ˆX
W Ñ T˚W . By [5, Lemma 3.1], h˝C is a closed conical subset of T˚W .

(2) p[5, Definition 7.1]q Assume that X and C are purely of dimension d and that W is purely of
dimension m. We say that a C-transversal map h : W Ñ X is properly C-transversal if every
irreducible component of C ˆX W is of dimension m.

(3) p[2, 1.2] and [5, Definition 5.3]q We say that a morphism f : X Ñ Y over k is C-transversal at
x P X if the inverse image df´1pCqˆX x is contained in the zero-section T˚Y Y ˆY X Ď T˚Y ˆY X,
where df : T˚Y ˆY X Ñ T˚X is the canonical map. We say that f is C-transversal if f is C-
transversal at any point of X.

1.2. Let X be a smooth scheme purely of dimension d over a field k. Let W be a smooth scheme purely of
dimension m over k. Assume that C Ď T˚X is a conical closed subset purely of dimension d. Let Z be a
d-cycle supported on C and h : W Ñ X a properly C-transversal morphism. Let prh : T˚XˆXW Ñ T˚X
be the first projection map. Since prh is a morphism between smooth schemes, the refined Gysin pull-
back pr!hZ is well-defined in the sense of intersection theory [3, 6.6]. We define h˚Z P CHmph

˝Cq [5,
Definition 7.1.2] to be

(1.2.1) h˚Z :“ dh˚ppr!hZq.

Notice that the push-forward is well-defined since dh : T˚X ˆX W Ñ T˚W is finite on C ˆX W by [2,
Lemma 1.2 (ii)]. Since h is properly C-transversal, every irreducible component of h˝C is of dimension
m. Thus CHmph

˝Cq “ Zmph
˝Cq. Hence we may regard h˚Z as a m-cycle on T˚W , which is supported

on h˝C.
We prove the following commutative property for successively pull-backs.

Lemma 1.3. Let X be a smooth scheme purely of dimension d over a field k. Consider the following
commutative diagram

(1.3.1)

U

g

��

j // W

f

��
Y

i // X
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between equidimensional smooth schemes over k. Let C Ď T˚X be a conical closed subset purely of
dimension d. Assume that i and f are C-transversal, and g is i˝C-transversal. Let Z be a d-cycle
supported on C. Then we have

(1) j is f˝C-transversal.
(2) g˝i˝C “ j˝f˝C Ď T˚U and an equality for cycle class g˚i˚Z “ j˚f˚Z.

Proof. (1) This follows from [5, Lemma 3.4.3].
(2) We have a commutative diagram

(1.3.2)

T˚X T˚X ˆX W
prfoo df // T˚W

T˚X ˆX Y

di

��

pri

OO

T˚X ˆX U
uoo

l

r

��

v

OO

w // T˚W ˆW U

prj

OO

dj

��
T˚Y

l

T˚Y ˆY Uprg
oo

dg
// T˚U

where the morphisms prf ,prg,pri and prj are the first projections, df, dg, di, dj are morphisms induced
from f, g, i, j respectively, and v “ id ˆ j, u “ id ˆ g, r “ di ˆ id. In the diagram (1.3.2), there are two
Cartesian squares which are indicated by the symbols “l”. Then we have

g˝i˝C “ dgppr´1
g pdippr´1

i Cqqq “ dgprpu´1ppr´1
i Cqqq(1.3.3)

“ dgprpv´1ppr´1
f Cqqq “ djpωpv´1ppr´1

f Cqqq

“ djppr´1
j pdfppr´1

f Cqqq “ j˝f˝C.

g˚i˚Z “ dg˚ppr!gpdi˚ppr!iZqqq “ dg˚pr˚pu
!ppr!iZqqq(1.3.4)

“ dg˚pr˚pv
!ppr!fZqqq “ dj˚pω˚pv

!ppr!fZqqq

“ dj˚ppr!jpdf˚ppr!fZqqq “ j˚f˚Z

where in (1.3.4) we used the push-forward formula [3, Theorem 6.2 (a)] and the fact that di (respectively
df) is finite on pr!iZ (respectively pr!fZ). This finishes the proof.

�

2. Localized Chern classes

2.1. Let X be a scheme of finite type over a field k, Z a closed subscheme of X and U “ XzZ. Let
K “ pKq, dqqq be a bounded complex of locally free OX -modules of finite ranks such that Kq “ 0 for q ă 0.
Assume that the restriction K|U is acyclic except at degree 0 and the cohomology sheaf H0pKq|U is locally
free of rank n ´ 1. Then for i ě n, we have the so-called localized Chern class ci

X
Z pKq P CHipZ Ñ Xq

(cf. [1, Section 3], [3, Chapter 18] and [4, 2.3]). Consider the following ring (cf. [3, Chapter 17])

(2.1.1) CH˚pZ Ñ Xqpnq “
ź

iăn

CHipX Ñ Xq ˆ
ź

iěn

CHipZ Ñ Xq.

We regard the total localized Chern class cXZ pKq “ ppcipKqqiăn, pciXZ pKqqiěnq as an invertible element of

CH˚pZ Ñ Xqpnq.
Let F be an OX -module such that the restriction F |U is locally free of rank n. If F has a finite

resolution E‚ Ñ F by locally free OX -modules Eq of finite ranks, the localized Chern class ci
X
Z pFq for

i ą n is defined as ci
X
Z pE‚q. It is independent of the choice of a resolution.

2.2. The following Lemma 2.3 and Lemma 2.4 are slight generalizations of [4, Lemma 2.3.2] and [4,
Lemma 2.3.4] respectively. We use the same arguments.

Lemma 2.3 ([4]). Let X be a scheme of finite type over a field k. Let D be a Cartier divisor of X
and i : D Ñ X be the immersion. Let E be a locally free OD-module of rank n. Assume there exist

a locally free OX-module rE of finite rank and a surjection rE Ñ i˚E so that the localized Chern class
cXDpi˚EpDqq P CH˚pD Ñ Xqp1q is defined. We put CH˚pXq “ ‘iCHipXq, CH˚pDq “ ‘iCHipDq and

put ajpEq “
řn
k“j

`

k
j

˘

cn´kpEq P CH˚pD Ñ Dq.
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(1) p[4, Lemma 2.3.2]q For any invertible OD-module L, we have
n
ÿ

k“0

ckpE b Lq “
n
ÿ

j“0

ajpEqc1pLqj .(2.3.1)

(2) p[4, Lemma 2.3.2 and Corollary 2.3.2]q For any α P CH˚pXq, we have equalities in CH˚pDq:

pcXDpi˚EpDqq ´ 1q X α “ cpEq´1
n
ÿ

j“1

ajpEqDj´1 X i!α,(2.3.2)

pcXDpi˚ODq
´1 ´ 1q X α “ ´i!α.(2.3.3)

where i! : CH˚pXq Ñ CH˚pDq denotes the Gysin map.

Proof. (1) See [4, Lemma 2.3.2].
(2) We use the same argument with [4, Lemma 2.3.2]. By deformation to the normal bundle, we may

assume X “ P1
D is a P1-bundle over D and the immersion i : D Ñ X is a section. Let p : X Ñ D be the

projection. Then E “ i˚EX with EX :“ p˚E . Since the map i˚ : CH˚pDq Ñ CH˚pXq is injective, it is
reduced to the equalities for the usual Chern classes cpi˚EpDqq and cpi˚ODq by [4, Proposition 2.3.1.1].
By the exact sequence

(2.3.4) 0 Ñ OXp´Dq Ñ OX Ñ i˚OD Ñ 0,

we get cpi˚ODq
´1 “ cpOXp´Dqq. Thus pcpi˚ODq

´1 ´ 1q X α “ ´c1pOXpDqq X α “ ´i!α. This proves
the equality (2.3.3). Now we prove (2.3.2). By the locally free resolution

(2.3.5) 0 Ñ EX Ñ EXpDq Ñ i˚EpDq Ñ 0,

we have

cpi˚EpDqq ´ 1 “ cpEXq´1pcpEXpDqq ´ cpEXqq(2.3.6)

(2.3.1)
“ cpEq´1p

n
ÿ

j“0

ajpEqDj ´ a0pEqq “ cpEq´1
n
ÿ

j“1

ajpEqDj .

Thus by the definition of Gysin pull-back along a divisor [3, 2.6], we have

pcpi˚EpDqq ´ 1q X α “ cpEq´1

˜

n
ÿ

j“1

ajpEqDj

¸

X α “ cpEq´1

˜

n
ÿ

j“1

ajpEqDj´1

¸

X i!α(2.3.7)

�

Lemma 2.4 ([4, Lemma 2.3.4]). Let X and C be regular schemes of finite type over a field k. Let
i : C Ñ X be a closed immersion of codimension c with conormal sheaf NC{X . Let π : X 1 Ñ X be the
blow up of X along C, πE : E “ C ˆX X 1 Ñ C be the induced map and i1 : E Ñ X 1 be the closed
immersion. We put

(2.4.1) ΦpX,Cq “
c
ÿ

j“1

ajpπ
˚
ENC{XqE

j´1 ´

c
ÿ

j“0

ajpπ
˚
ENC{XqE

j .

For any α P CH˚pX
1q, we have an equality in CH˚pCq:

πE˚ppc
X1

E pΩ
1
X1{Xq ´ 1q X αq “ cpNC{Xq

´1 X πE˚pΦpX,Cq X i
1!αq,(2.4.2)

If moreover i1!α “ π˚Eβ for some β P CH˚pCq, then we have

πE˚pΦpX,Cq X i
1!αq “ p´1qc ¨ pc´ 1q ¨ β,(2.4.3)

πE˚ppc
X1

E pΩ
1
X1{Xq ´ 1q X αq “ p´1qc ¨ pc´ 1q ¨ cpNC{Xq

´1 X β.(2.4.4)

Proof. Note that the canonical map Ω1
X1{X Ñ i1˚Ω1

E{C is an isomorphism. Since E “ PppNC{Xq_q is a

Pc´1-bundle over C, we have an exact sequence 0 Ñ Ω1
E{C Ñ π˚ENC{Xp´1q Ñ OE Ñ 0. Hence, we

have cX
1

E pΩ
1
X1{Xq “ cX

1

E pi
1
˚π
˚
ENC{Xp´1qqcX

1

E pi
1
˚OEq

´1. By the exact sequence 0 Ñ OX1p´Eq Ñ OX1 Ñ

i1˚OE Ñ 0, we get

(2.4.5) 0 Ñ π˚ENC{X Ñ π˚ENC{XpEq Ñ π˚ENC{XpEq Ñ 0.
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By Lemma 2.3, we have

pcX
1

E pi
1
˚π
˚
ENC{Xp´1qqcX

1

E pi
1
˚OEq

´1 ´ 1q X α(2.4.6)

“ pcX
1

E pi
1
˚π
˚
ENC{Xp´1qq ´ 1q X α` cX

1

E pi
1
˚π
˚
ENC{Xp´1qqpcX

1

E pi
1
˚OEq

´1 ´ 1q X α

(2.3.3)
“ pcX

1

E pi
1
˚π
˚
ENC{Xp´1qq ´ 1q X α´ cpπ˚ENC{Xp´1qq X i1!α

(2.4.5)
“ pcX

1

E pi
1
˚π
˚
ENC{XpEqq ´ 1q X α´ cEpπ

˚
ENC{Xq

´1cEpπ
˚
ENC{XpEqq X i

1!α

(2.3.2)
“ cEpπ

˚
ENC{Xq

´1

˜

c
ÿ

j“1

ajpπ
˚
ENC{XqE

j´1 X i1!α´
c
ÿ

j“0

ajpπ
˚
ENC{XqE

j X i1!α

¸

“ cpNC{Xq
´1 X πE˚pΦpX,Cq X i

1!αq.

By [3, Remark 3.2.4, p.55], we have Ec “ ´
řc
j“1 cjpπ

˚
ENC{XqE

c´j . Assume i1!α “ π˚Eβ for some

β P CH˚pCq. By [3, Proposition 3.1 (a)], we have πE˚pE
jXπ˚Eβq “ 0 for j ă c´1 and πE˚pE

c´1Xπ˚Eβq “
p´1qc´1β. Substituting these identities, we have

πE˚pΦpX,Cq X i
1!αq(2.4.7)

“p´1qc´1 ¨ pacpNC{Xq ´ ac´1pNC{Xq ` acpNC{Xqc1pNC{Xqq X β

Since acpNC{Xq “ 1, ac´1pNC{Xq “ c ` c1pNC{Xq then πE˚pΦpX,Cq X i1!αq “ p´1qc ¨ pc ´ 1q ¨ β and

πE˚ppc
X1

E pΩ
1
X1{Xq ´ 1q X αq “ p´1qc ¨ pc´ 1q ¨ cpNC{Xq

´1 X β. �

3. Blow up formula for Gysin pull-back

3.1. Let X be a smooth scheme purely of dimension d over a field k. We denote by 0X : X Ñ T˚X the
zero section of the cotangent bundle T˚X. We denote by 0!X P CHdpX Ñ T˚Xq the (refined) Gysin
map [3, 6.2], where CHdpX Ñ T˚Xq is the bivariant Chow group [3, Definition 17.1]).

3.2. We recall a method for calculating the Gysin map 0!X by using Chern classes. Let X be a regular
scheme separated of finite type over a field. Let E be a locally free OX -modules of rank d on X.
Let E “ SpecpSym‚OXE

_q be the associated vector bundle of rank d on X with structure morphism
π : E Ñ X. The projective bundle of E is PpEq “ ProjpSym‚OXE

_q. We have a closed immersion

PpEq ãÑ P pE ‘ 1q :“ P pE ‘ A1
Xq with open complementary E ãÑ PpE ‘ 1q. Let s : X Ñ E be the zero

section. Let k ě 0 be an integer and β P CHkpEq. For any element β̄ P CHkpPpE‘ 1qq, if the restriction
of β̄ to CHkpEq equals to β, then we have [3, Proposition 3.3]

(3.2.1) s!pβq “ q˚pcdpξq X β̄q,

where ξ “ q˚pE‘1q
OPpE‘1qp´1q is the universal rank d quotient bundle of q˚pE ‘ 1q. For any element α P

CH˚pXq “ ‘iCHipXq, we denote by tαuj the dimension j part of α, i.e., the image of α by the
projection CH˚pXq Ñ CHjpXq. Let cpξq be the total Chern class of ξ, then we can write (3.2.1) as
follows

(3.2.2) s!pβq “
 

q˚pcpξq X β̄q
(

k´d
.

By the Whitney sum formula for Chern classes [3, Theorem 3.2], we have

cpξq “ cpq˚Eq ¨ cpOPpE‘1qp´1qq´1.(3.2.3)

Thus the formula (3.2.2) can be written in the following way

s!pβq “
 

q˚pcpq
˚Eq X cpOPpE‘1qp´1qq´1 X β̄q

(

k´d
(3.2.4)

“
 

cpEq X q˚pcpOPpE‘1qp´1qq´1 X β̄q
(

k´d

where the last equality follows from the projection formula [3, Theorem 3.2].

Lemma 3.3. Let X and Y be smooth and connected schemes over a field k and let i : Y ãÑ X be a closed

immersion of codimension c. Let π : rX Ñ X be the blow up of X along Y . Let C Ď T˚X be a conical
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closed subset purely of dimension d “ dimX and let Z be a d-cycle supported on C. Suppose π and i are
properly C-transversal. Then we have an equality in CH0pXq:

π˚p0
!
ĂX
pπ˚Zqq “ 0!XpZq ` p´1qc ¨ pc´ 1q ¨ i˚p0

!
Y pi

˚Zqq,(3.3.1)

For the definition of the Gysin map 0!‚, see Subsection 3.1.

Proof. Let rY be the exceptional divisor of π : rX Ñ X with projection map π̃ : rY Ñ Y . Let ĩ : rY ãÑ rX be
the closed immersion. We have a commutative diagram

(3.3.2)

T˚X

��

T˚X ˆX
ĂX

��

prπoo dπ // T˚ĂX

��

T˚ĂX ˆ
ĂX

rY

��

pr
ĩoo dĩ //

��

T˚ rY

��
PpT˚X ‘ 1q

q

��
l

PpT˚X ˆX
ĂX ‘ 1q

q1

��

prπoo dπ // PpT˚ĂX ‘ 1q

p

��

p

vv

l

PpT˚ĂX ˆ
ĂX

rY ‘ 1q

p1

��

pr
ĩoo dĩ //

��

PpT˚ rY ‘ 1q

r

ww
X ĂX

πoo ĂX

π

��

rY

π̃

��

ĩoo

X Y
ioo

l

where prπ and prĩ are the first projections, dπ : T˚XˆX rX Ñ T˚ rX (respectively dĩ : T˚ rXˆ
ĂX
rY Ñ T˚ rY )

is the map induced by π : rX Ñ X (respectively ĩ : rY Ñ Y ), the maps prπ, dπ, prĩ and dĩ are the maps

induced by prπ, dπ, prĩ and dĩ respectively, all other maps are either the canonical projection morphisms
or open immersions. In (3.3.2), we use the symbol “l” to mean the square is a Cartesian diagram. For

example, the most left-bottom square in (3.3.2) is Cartesian since q1 is proper and PpT˚X ˆX rX ‘ 1q has

dense image in PpT˚X ‘ 1qˆX rX. Note also that the map dĩ is only well-defined on the open subscheme

T˚ rX ˆ
ĂX
rY , but this is enough for our purpose (cf. [5, Lemma 6.4]).

For any α P CHdpT
˚Xq, we denote by α P CHdpPpT˚X ‘ 1qq an extension of α (cf. 3.2). We

choose an extension Z P CHdpPpT˚X ‘ 1qq of Z. Then pr!πpZq is an extension of pr!πZ. Since π is
C-transversal, the push-forwards dπ˚ppr!πZq and dπ˚ppr!πpZqq are well-defined, and dπ˚ppr!πpZqq is an
extension of dπ˚ppr!πZq.

Since π̃ is smooth, thus π̃ is i˝C-transversal by [5, Lemma 3.4.1]. By Lemma 1.3, ĩ is π˝C-transversal
and we have

(3.3.3) π̃˚i˚Z “ ĩ˚π˚Z.

The following exact sequence (̃i˚Ω1
rY {Y

» Ω1
ĂX{X

)

(3.3.4) 0 Ñ π˚Ω1
X Ñ Ω1

ĂX
Ñ ĩ˚Ω1

rY {Y
Ñ 0

gives a resolution of ĩ˚Ω1
rY {Y

by locally free sheaves of finite rank. Thus the localized Chern class

ck
X
Y p̃i˚Ω1

rY {Y
q P CH˚pY Ñ Xq is well-defined for k ě 1 (cf. Subsection 2.1). In order to simplify

the notation, we put clock p̃i˚Ω1
rY {Y
q :“ ck

X
Y p̃i˚Ω1

rY {Y
q and clock pp

˚ĩ˚Ω1
rY {Y
q :“ ck

PpT˚ĂX‘1q

PpT˚ĂXˆ
ĂX
rY‘1q

pp˚ĩ˚Ω1
rY {Y
q.

Similarly, we denote by cloc the total localized Chern class. Applying the Whitney sum formula for
(localized) Chern classes (cf. [1, Proposition 3.1]) to the exact sequence (3.3.4), we get

(3.3.5) cpΩ1
ĂX
q “ cpπ˚Ω1

Xq ¨ c
locp̃i˚Ω1

rY {Y
q “ cpπ˚Ω1

Xq ` cpπ
˚Ω1

Xq ¨ pc
locp̃i˚Ω1

rY {Y
q ´ 1q.
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We will simply denote by Op1q for OPpT˚ĂX‘1q
p1q (and also for OPpT˚X‘1qp1q and so on) in the following

calculations. We have

π˚p0
!
ĂX
pπ˚Zqq

(3.2.4)
“

!

π˚

´

cpΩ1
ĂX
q X p˚

`

cpOp´1qq´1 X dπ˚pr!πZ
˘

¯)

0
(3.3.6)

(3.3.5)
“

!

π˚

´

cpπ˚Ω1
Xq ¨ c

locp̃i˚Ω1
rY {Y
q X p˚

`

cpOp´1qq´1 X dπ˚pr!πZ
˘

¯)

0

paq
“

!

cpΩ1
Xq X π˚

´

clocp̃i˚Ω1
rY {Y
q X p˚

`

cpOp´1qq´1 X dπ˚pr!πZ
˘

¯)

0
.

“
 

cpΩ1
Xq X π˚

`

p˚
`

cpOp´1qq´1 X dπ˚pr!πZ
˘˘(

0

`

!

cpΩ1
Xq X π˚

´´

clocp̃i˚Ω1
rY {Y
q ´ 1

¯

X p˚
`

cpOp´1qq´1 X dπ˚pr!πZ
˘

¯)

0

lem.2.4
“

 

cpΩ1
Xq X π˚

`

p˚
`

cpOp´1qq´1 X dπ˚pr!πZ
˘˘(

0
(3.3.7)

`
 

i˚
`

cpi˚Ω1
Xq X cpNY {Xq

´1 X π̃˚
`

ΦpX,Y q X ĩ!
`

p˚
`

cpOp´1qq´1 X dπ˚pr!πZ
˘˘˘˘(

0

where (a) follows from the projection formula [3, Theorem 3.2].
We calculate the first term of (3.3.7). Using projection formula [3, Theorem 3.2] and [3, Proposition

17.3.2], we have

 

cpΩ1
Xq X π˚

`

p˚
`

cpOp´1qq´1 X dπ˚pr!πZ
˘˘(

0
(3.3.8)

“

!

cpΩ1
Xq X π˚p˚dπ˚pcpdπ

˚Op´1qq´1 X pr!πZq
)

0

“
 

cpΩ1
Xq X π˚q

1
˚pcpOp´1qq´1 X pr!πZq

(

0

“
 

cpΩ1
Xq X π˚q

1
˚

`

cppr˚πOp´1qq´1 X pr!πZ
˘(

0

“
 

cpΩ1
Xq X π˚q

1
˚pr!π

`

cpOp´1qq´1 X Z
˘(

0

“
 

cpΩ1
Xq X π˚π

˚q1˚
`

cpOp´1qq´1 X Z
˘(

0

pbq
“

 

cpΩ1
Xq X q

1
˚

`

cpOp´1qq´1 X Z
˘(

0

(3.2.4)
“ 0!XpZq

where (b) follows from [3, Proposition 6.7] since π is a blow-up.
Now we calculate the second term of (3.3.7). First, by push-forward [3, Theorem 6.2(a)] and the

projection formula [3, Theorem 3.2], we have

ĩ!
`

p˚
`

cpOp´1qq´1 X dπ˚pr!πZ
˘˘

“ p1˚pr˚
ĩ

`

cpOp´1qq´1 X dπ˚pr!πZ
˘

(3.3.9)

“ p1˚
`

cpOp´1qq´1 X pr!
ĩ
dπ˚pr!πZ

˘

“ r˚dĩ˚
`

cpOp´1qq´1 X pr!
ĩ
dπ˚pr!πZ

˘

“ r˚dĩ˚

´

cpdĩ
˚

Op´1qq´1 X pr!
ĩ
dπ˚pr!πZ

¯

“ r˚

´

cpOp´1qq´1 X dĩ˚pr!
ĩ
dπ˚pr!πZ

¯

“ r˚

´

cpOp´1qq´1 X ĩ˚π˚Z
¯

(3.3.3)
“ r˚

`

cpOp´1qq´1 X π̃˚i˚Z
˘

.
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Consider the following commutative diagram induced from the morphism π̃ : rY Ñ Y .

(3.3.10)

T˚Y

��

T˚Y ˆY rY
prπ̃

oo

��

dπ̃
// T˚ rY

��
PpT˚Y ‘ 1q

s

��

PpT˚Y ˆY rY ‘ 1q
prπ̃oo

s1

��

dπ̃ // PpT˚ rY ‘ 1q

r

vv
Y

l

i

��

rY
π̃

oo

ĩ

��
X

l

rX
π

oo

Since dπ̃˚pr!πi
˚Z is an extension of π̃˚i˚Z to PpT˚ rY ‘ 1q, thus (3.3.9) equals to

ĩ!
`

p˚
`

cpOp´1qq´1 X dπ˚pr!πZ
˘˘

“ r˚
`

cpOp´1qq´1 X dπ̃˚pr!π̃i
˚Z

˘

(3.3.11)

pcq
“ r˚dπ̃˚

`

cpOp´1qq´1 X pr!π̃i
˚Z

˘

“ r˚dπ̃˚
`

pr˚πcpOp´1qq´1 X pr!π̃i
˚Z

˘

pdq
“ r˚dπ̃˚pr!π̃

`

cpOp´1qq´1 X i˚Z
˘

where we used the projection formula [3, Theorem 3.2] in step (c), and (d) follows from [3, Proposition
17.3.2]. By the commutative diagram (3.3.10) and the push-forward formula [3, Theorem 6.2], we have

r˚dπ̃˚pr!π̃ “ s1˚pr!π̃ “ π̃!s˚ “ π̃˚s˚.(3.3.12)

By (3.3.11) and (3.3.12), the second term of (3.3.7) equals to
 

i˚
`

cpi˚Ω1
Xq X cpNY {Xq

´1 X π̃˚
`

ΦpX,Y q X ĩ!
`

p˚
`

cpOp´1qq´1 X dπ˚pr!πZ
˘˘˘˘(

0
(3.3.13)

“
 

i˚
`

cpi˚Ω1
Xq X cpNY {Xq

´1 X π̃˚
`

ΦpX,Y q X π̃˚s˚
`

cpOp´1qq´1 X i˚Z
˘˘˘(

0

(2.4.3)
“ p´1qc ¨ pc´ 1q

 

i˚
`

cpi˚Ω1
Xq X cpNY {Xq

´1 X s˚
`

cpOp´1qq´1 X i˚Z
˘˘(

0

p1q
“p´1qc ¨ pc´ 1q

 

i˚
`

cpΩ1
Y q X s˚

`

cpOp´1qq´1 X i˚Z
˘˘(

0

(3.2.4)
“ p´1qc ¨ pc´ 1q ¨ i˚0!Y pi

˚Zq.

where the step (1) follows from cpi˚Ω1
Xq ¨ cpNY {Xq

´1 “ cpΩ1
Y q since we have an exact sequence

(3.3.14) 0 Ñ NY {X Ñ i˚Ω1
X Ñ Ω1

Y Ñ 0,

where NY {X is the conormal sheaf associated to the the regular immersion i : Y Ñ X.
Finally, by (3.3.6), (3.3.8) and (3.3.12), we get (3.3.1). This finishes the proof. �
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