
Neurocomputing 331 (2019) 366–374

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

An effective EM algorithm for mixtures of Gaussian processes via the

MCMC sampling and approximation

Di Wu, Jinwen Ma

∗

Department of Information Science, School of Mathematical Sciences and LMAM, Peking University, Beijing 100871, China

a r t i c l e i n f o

Article history:

Received 31 July 2017

Revised 2 October 2018

Accepted 13 November 2018

Available online 23 November 2018

Communicated by zhi yong Liu

Keywords:

Mixture of Gaussian processes

EM algorithm

MCMC sampling

Multimodal data

Classification

Prediction

a b s t r a c t

The Mixture of Gaussian Processes (MGP) is a powerful statistical model for characterizing multimodal

data, but its conventional Expectation-Maximization (EM) algorithm (Dempster et al., 1977) is computa-

tionally intractable because of its time complexity. To solve this problem, some approximation techniques

have been proposed in the conventional EM algorithm. However, these approximate EM algorithms are in-

effective or limited in some situations. To implement the EM algorithm more effectively, we approximate

the EM algorithm with simulated samples of latent variable via the Monte Carlo Markov Chain (MCMC)

sampling, and design an MCMC EM algorithm. Experiments on both synthetic and real-world data sets

demonstrate that our MCMC EM algorithm is more effective than the state-of-the-art EM algorithms on

classification and prediction problems.

© 2018 Elsevier B.V. All rights reserved.

o

A

s

E

[

a

m

g

b

M

s

t

a

c

i

a

g

F

2

1. Introduction

Gaussian Process (GP) is a powerful model in machine learning

and computer vision [1,2] . However, it is ineffective for a single

Gaussian process to model a multimodal data set along its input

region. To overcome this difficulty, Tresp [3] suggested the Mix-

ture of GPs (MGP) that takes the architecture of mixture of experts

[4,5] . As such, the MGP model can be considered as a combination

of several GPs by a gating network or function. However, it can

learn temporal information and predict time series because these

GPs take a temporal structure. So, the MGP model has been inves-

tigated and developed greatly in recent years beyond the conven-

tional mixture of experts.

As sample points of the MGP model are not independent, its pa-

rameter learning is a challenging problem. To date, there are three

major approaches for parameter learning, i.e., the Markov Chain

Monte Carlo (MCMC) method [6] , the Variational Bayesian (VB) in-

ference and the Expectation-Maximization (EM) algorithm. Specif-

ically, the MCMC method often achieves an accurate result but re-

quires more convergence time, while the VB inference is always

quickly implemented but ineffective. As a powerful tool, the EM al-

gorithm has been intensively applied for MGPs [7,8] . In fact, there

are four EM algorithms, i.e., heuristic EM, variational EM, leave-
∗ Corresponding author.

E-mail addresses: wudi2@snnu.edu.cn (D. Wu), jwma@math.pku.edu.cn ,

jwma@pku.edu.cn (J. Ma).

m

s

(

https://doi.org/10.1016/j.neucom.2018.11.046

0925-2312/© 2018 Elsevier B.V. All rights reserved.
ne-out-cross-validation (LOOCV) EM and hard-cut EM algorithms.

lthough these EM algorithms work well in some situations, they

till have certain limitations.

To get rid of above difficulties, we recently designed an MCMC

M algorithm with merits of MCMC sampling and EM algorithm in

9] . In fact, the MCMC EM algorithm was proposed twenty years

go, but it had not been adopted for the learning of the MGP

odel. In this paper, we extend the study of the MCMC EM al-

orithm for MGPs methodologically and theoretically. The research

ackground and related work are systematically analyzed and the

CMC EM algorithm is mathematically derived and carefully de-

igned. Moreover, we conduct systematic experiments on both syn-

hetic and real-world data sets to demonstrate that the MCMC EM

lgorithm outperforms the state-of-the-art EM algorithms on both

lassification and prediction.

The paper is organized as follows. Some related works are given

n Section 2 . For clarity, the GP and MGP models are revisited and

nalyzed in Section 3 . In Section 4 , we present the MCMC EM al-

orithm for MGPs. Experimental results are shown in Section 5 .

inally, we conclude the paper in Section 6 .

. Related works

The gating function for MGPs: The gating function of the MGP

odel has three forms, i.e., the logistic distribution [3] , Gaus-

ian distribution [10] and Gaussian mixture distribution or model

GMM) [11] . The logistic distribution gating function inherits from

https://doi.org/10.1016/j.neucom.2018.11.046
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2018.11.046&domain=pdf
mailto:wudi2@snnu.edu.cn
mailto:jwma@math.pku.edu.cn
mailto:jwma@pku.edu.cn
https://doi.org/10.1016/j.neucom.2018.11.046

D. Wu and J. Ma / Neurocomputing 331 (2019) 366–374 367

t

t

a

g

w

m

u

r

a

t

T

p

[

d

s

o

[

h

e

I

t

t

t

t

a

a

r

t

t

g

d

n

p

p

f

e

s

a

t

c

i

a

i

i

f

r

s

t

E

s

a

q

M

r

a

E

a

3

M

a

3

w

d

y

e

[

d

w

c

a

A

t

a

a

c

w

c

a

y

b

a

t

t

t

i

m

o

m

3

t

s

i

t

n

c

i

a

t

s

o

s

z

o

c

P

w

1 The Gaussian distribution is a foundation of GP and MGP models. The density

function of the d -dimensional Gaussian distribution is mathematically expressed

by

p (x) =

1

(2 π)
d/ 2 | �| 1 / 2 exp

[
− 1

2
(x − μ)

T �−1
(x − μ)

]
,

where d is the dimension of x . In addition, μ and � are a d -dimensional mean

vector and a d × d covariance matrix, respectively. For simplicity, this Gaussian dis-

tribution is denoted by x ∼ N (μ, �) .
he conventional mixture of experts directly, but it is not effec-

ive for MGPs. The GMM gating function is complex and thus only

dopted for certain complex data sets. The Gaussian distribution

ating function is effective yet not complex, so it has been used

idely.

The MCMC method and VB inference for MGPs: The MCMC

ethod approximates the intractable integration or summation by

sing a large set of simulated samples generated from a poste-

ior probability distribution [10,12–14] . In theory, it can achieve

n accurate result with a large number of simulated samples, but

he generation of these simulated samples requires more time.

he VB inference generally approximates the complex posterior

robability distribution via the mean field approximation method

15] . As parameters and indicators are assumed to be indepen-

ent, the VB inference is fast, but it is generally not effective

ince the approximated distribution is inconsistent with the real

ne.

The EM algorithm for MGPs: The conventional EM algorithm

8] is a popular iterative method to learn the maximum likeli-

ood estimation for a statistical model with latent variables. In

ach iteration, there are two major steps, i.e., E-step and M-step.

n the E-step, Q-function is obtained by calculating the expecta-

ion of the log likelihood with respect to the latent variables. In

he M-step, Q-function is further maximized to update parame-

ers. For MGPs, the indicatory variables of samples with respect

o GPs are regarded as latent variables. To date, all existing EM

lgorithms for MGPs are approximations of the conventional EM

lgorithm since the time complexity of the conventional EM algo-

ithm is of exponential order. Although it is efficient, the heuris-

ic EM algorithm is very coarse because the update of parame-

ers is not based on the Q-function [3,8] . The variational EM al-

orithm approximates the distribution of all parameters and in-

icators by the mean field method, so it shares the same weak-

ess as the VB inference [11,16,17] . The LOOCV EM algorithm ap-

roximates the distribution of a Gaussian process with the LOOCV

robability decomposition that makes the calculation of the Q-

unction feasible [18] . Although the LOOCV EM algorithm is more

ffective, it cannot achieve accurate results due to the similar rea-

on of the variational EM algorithm. The hard-cut EM algorithm ,

lso known as the classification EM algorithm [19] , approximates

he Q-function by the total log likelihood function, whose indi-

ators are calculated in a hard-cut or classification way accord-

ng to the maximum a posteriori (MAP) principle. The hard-cut EM

lgorithm for MGPs is more accurate since there is no probabil-

ty decomposition of any Gaussian process [20–22] . However, it

s easy to be trapped into a local maximum of the log likelihood

unction.

The MCMC EM algorithm: In each iteration of the EM algo-

ithm, the MCMC sampling method is used to obtain sufficient

imulated samples of latent variables so that a good estimator of

he Q-function can be calculated directly [23,24] . In this way, the

M algorithm is implemented efficiently. From the viewpoint of

tatistics, the MCMC approximation is more precise than the above

pproximations for the Q-function as long as the number of re-

uired simulated samples is sufficiently large. It is clear that the

CMC EM algorithm is a special Monte Carlo EM (MCEM) algo-

ithm. Mathematically, the MCEM algorithm is usually regarded as

 stochastic version of the hard-cut EM algorithm, and the hard-cut

M algorithm is regarded as a deterministic version of the MCEM

lgorithm.

. The GP and MGP models

We revisit Gaussian process (GP) and mixture of GPs (MGP). For

GPs, the crucial problem for establishing the EM algorithm is an-

lyzed.
.1. The GP model

The Gaussian process is a widely used stochastic process in

hich any group of states (or outputs) is subject to a Gaussian

istribution [1,2] . For a data set D = { (x n , y n) } N n = 1 , where x n and

 n are a pair of input and output (variables) at time n , the gen-

ral Gaussian process is defined as follows. If the output vector

y 1 , . . . , y N]
T is subject to an N -dimensional Gaussian distribution

1 ,

enoted by N (0 , C) , then [y 1 , . . . , y N]
T follow a Gaussian process,

here C =

[
c
(
x n , x n ′ ;θ

)]
N×N

is an N × N covariance matrix in which

(
x n , x n ′ ;θ

)
is a covariance function between two inputs.

There are many kinds of covariance functions for the GP model,

nd the squared exponential covariance function is widely used.

ctually, the squared exponential covariance function is stationary,

hat is, it is a function of x n − x n ′ . The squared exponential covari-

nce function is a type of the Radial Basis Function (RBF) covari-

nce function. Mathematically, it takes the following form:

(
x n , x n ′ ;θ

)
= θ1 exp

[
−θ2 (x n − x n ′)

2
/ 2

]
+ θ3 δnn ′ ,

here δnn ′ is the Kronecker delta function, θ = [θ1 , θ2 , θ3] with θ3

ontrolling the noise variance globally. If two inputs x n and x n ′
re close within the input region, then the corresponding outputs

 n and y n ′ are more correlated. To date, many algorithms have

een established to learn the parameter θ of the GP model, such

s the gradient-ascent maximum likelihood, expectation propaga-

ion, Laplace’s approximation and variational bounds [25,26] . All of

hese methods usually achieve good results on parameter estima-

ion, so we adopt the simplest one, i.e., the gradient-ascent max-

mum likelihood algorithm in our learning paradigm. In the GP

odel, the dimension of the Gaussian distribution is the number

f samples N . As a result, the time complexity of parameter esti-

ation for the GP model is generally O (N

3).

.2. The MGP model

A single GP cannot characterize a multimodal data set along

he input region because the structure of the GP model is rather

imple. However, there are many multimodal data sets available

n practical applications. To overcome this difficulty, we extend

he single GP model to an MGP model in which different com po-

ents or segments are involved along the input region and each

omponent is subject to a GP model independently [3] . The gat-

ng network combines these predictive Gaussian processes together

long the input region and we select the gating functions as cer-

ain Gaussian distributions. For simplicity, we still denote the data

et of the MGP model by D = { (x n , y n) } N n =1 , and describe the detail

f the MGP model as follows.

First, we introduce the association of the n th sample with re-

pect to K components by an unknown indicator, as denoted by

 nk . If the n th sample belongs to the k th component, then z nk = 1 ;

therwise, z nk = 0 . Let z n = [z n 1 , . . . , z nK]
T denote a vector of indi-

ators; it is subject to

 (z n = e k) = πk , (1)

here e k is the k th column of a K × K unit matrix and

∑ K
k =1 πk = 1 .

368 D. Wu and J. Ma / Neurocomputing 331 (2019) 366–374

l

t

Q

w

U

f

e

c

o

l

h

f

u

a

d

c

v

c

p

i

w

a

Z

n

w

r

P

f

t

e

c

w

G

s

Z

d

B

M

4

μ
a

π

μ

σ
Second, let the corresponding input x n be subject to a Gaussian

distribution

x n | (z n = e k) ∼ N

(
μk , σ

2
k

)
, (2)

where μk and σ k are the mean and standard deviation of the

Gaussian distribution, respectively. As the input of each compo-

nent is subject to a Gaussian distribution, the input of all K com-

ponents is actually subject to a Gaussian mixture model (GMM)

(or mixture of Gaussian distributions). Generally, the input dis-

tributions are consistent with the GMM in practical applications.

Even if the input distributions are not similar to the GMM, the

GMM can still learn them well. Thus, the GMM is very flexible for

learning of an input distribution. For example, the input of data

set in Section 5.2 is nearly subject to a uniform distribution, but

the GMM can still learn it well. On the other hand, the means

μ1 , μ2 , . . . , μK should be set differently so that these GP models

can be located in different input regions. Two distributions of Eqs.

(1) and (2) are combined together to form the gating network of

our MGP model.

We further denote the component column vector of y n belong-

ing to the k th component by y k = [y n | z n = e k ; n = 1 , . . . , N] , being

subject to a GP model as follows:

y k ∼ N (0 , C k) , (3)

where C k =

[
c
(
x n , x n ′ ;θk

)| z n = z n ′ = e k ; n, n ′ = 1 , · · · , N

]
is the co-

variance matrix of the k th component. With these specific GP com-

ponents, we get the MGP model via the above gating network.

If prior probabilities are given for certain parameters, then the

MGP model is a Bayesian model. But these prior probabilities offer

no significant advantage on our learning task. Therefore, we do not

use the Bayesian model for MGPs. As a result, the information flow

direction of the MGP model is z n → x n → y n , which is reasonable

for a general regression model. Sketches of four synthetic data sets

generated from four typical MGP models are illustrated in Fig. 1 ,

respectively, in which sample points of each component are repre-

sented in the same color.

Finally, we have the total log likelihood function of the MGP

model on the given data set

L (�, Z) =

K ∑

k =1

{

N ∑

n =1

z nk [ln πk + ln p (x n | μk , σk)] + ln p
(

y k | x k , θk

)}

,

(4)

where Z = [z 1 , . . . , z N] is a K × N indicator matrix, � ={
πk , μk , σk , θk

}K

k =1
denotes the whole parameter set, and x k

is defined in the same way as y k . Methodologically, we use the

EM algorithm to obtain the maximum likelihood estimation it-

eratively. But in this case, [y k] 1 , [y k] 2 , . . . , [y k] ∑ N
n =1 z nk

are strongly

dependent, which is a challenging problem for the establishment

of an effective EM algorithm for MGPs.

4. MCMC EM algorithm

We first derive the ˆ Q -function as the MCMC approximated Q-

function for MGPs and establish the method for maximizing the ˆ Q -

function. Next, we design the MCMC EM algorithm and its overall

MCMC prediction strategy.

4.1. Derivation and maximization of ˆ Q -function

4.1.1. Derivation of ˆ Q -function

We derive the ˆ Q -function in the following two steps. (1). The

Q-function of the conventional EM algorithm is derived for MGPs;

(2). We further obtain the ˆ Q -function. The indicators of samples

with respect to the components of the MGP model are treated as
atent variables of conventional EM and MCMC EM algorithms. For

he conventional EM algorithm, the Q-function is given by

(
�| ̂ �

)
= E Z

[
L (�, Z) |D, ˆ �

]
=

∑

Z

P
(
Z |D, ˆ �

)
L (�, Z) , (5)

here L(�, Z) is the total log likelihood function given by Eq. (4) .

nfortunately, the number of possible values of Z is K

N and there-

ore the time complexity of calculating the Q-function value is of

xponential order of the number of sample points. As a result, the

onventional EM algorithm is of exponential order of the number

f sample points, and the time consumption becomes extremely

arge even if N ≥ 50.

To overcome the time complexity, the variational, LOOCV and

ard-cut mechanisms have been proposed to approximate the Q-

unction. Moreover, calculating these approximated Q-function val-

es are of polynomial order. Thus, the variational EM, LOOCV EM

nd hard-cut EM algorithms have a complexity of polynomial or-

er. However, all these approximations are heuristic and even quite

oarse. In contrast, the Monte Carlo (MC) or MCMC sampling pro-

ide a reasonable way to approximate the Q-function. Furthermore,

omputing the MC or MCMC approximated Q-function value is of

olynomial order, and therefore the MCEM or MCMC EM algorithm

s more efficient. By replacing every z nk of Z with a simulated z nki ,

e define an indicatory matrix Z i for i = 0 , 1 , 2 , Then, Z 1 , Z 2 , . . .

re simulated samples generated by MC or MCMC sampling, with

 0 being the initial state of the MCMC sampling. Also, the other

otation about the i th simulated sample is denoted in the same

ay as Z i . The first step of MC approximation is to generate a se-

ies of simulated samples, Z 1 , Z 2 , . . . , from the target distribution

(
Z |D, ˆ �

)
in Eq. (5) . However, a lot of MC samplings do not per-

orm well in this case because of the high dimension of Z .

To generate a set of simulated samples, Z 1 , Z 2 , . . . , we utilize

he MCMC sampling, which is a special MC sampling in the gen-

ration of high-dimensional simulated samples. In the MCMC pro-

edure, we construct an irreducible Markov chain, Z 0 , Z 1 , Z 2 , . . . ,

hose stationary distribution is our target distribution P
(
Z |D, ˆ �

)
.

enerally, there exists a reasonable number I 0 such that simulated

amples, Z I 0 +1 , Z I 0 +2 , . . . , are nearly subject to P
(
Z |D, ˆ �

)
. In fact,

 1 , . . . , Z I 0
may not forget the initial state Z 0 . Therefore, we can

iscard these previous simulated samples during MCMC sampling.

y selecting a proper number I , we get the ˆ Q -function, i.e., the

CMC approximated Q-function, by

ˆ Q

(
�| ̂ �

)
=

1

I

I 0 +I ∑

i=I 0 +1

L (�, Z i)

=

1

I

I 0 + I ∑

i = I 0 +1

K ∑

k =1

{

N ∑

n =1

z nki [ln πk + ln p (x n | μk , σk)] + ln p
(
y ki | x ki , θk

)}

.

(6)

.1.2. Maximization of ˆ Q -function

By setting the derivatives of the ˆ Q -function with respect to π k ,

k and σ k be zero, we obtain the analytical maximums of π k , μk

nd σ k directly:

k =

N k ∑ K
k =1 N k

, (7)

k =

1

N k

I 0 + I ∑

i = I 0 +1

N ∑

n =1

z nki x n , (8)

2
k =

1

N k

I 0 + I ∑

i = I 0 +1

N ∑

n =1

z nki (x n − μk)
2
, (9)

D. Wu and J. Ma / Neurocomputing 331 (2019) 366–374 369

0 5 10 15 20
−1

−0.5

0

0.5

1

1.5

Input

O
ut

pu
t

sample of the 1st component
sample of the 2nd component
sample of the 3rd component

0 5 10 15 20 25 30 35
−1

−0.5

0

0.5

1

1.5

2

2.5

Input

O
ut

pu
t

sample of the 1st component
sample of the 2nd component
sample of the 3rd component
sample of the 4th component
sample of the 5th component

−5 0 5 10 15 20 25
−1

−0.5

0

0.5

1

1.5

2

Input

O
ut

pu
t

sample of the 1st component
sample of the 2nd component
sample of the 3rd component

0 5 10 15 20
−1

−0.5

0

0.5

1

1.5

2

Input

O
ut

pu
t

sample of the 1st component
sample of the 2nd component
sample of the 3rd component

a b

d
c

Fig. 1. (a–c), (d) are sketches of data sets S 1 , S 5 , S 9 with six hundred samples and S 13 with one thousand samples, respectively, described in Section 5.1 .

w

r

l

t

w

4

4

f

s

t

a

p

i

t

v

o

t

s

t[
I

o

c

2

4

M

o

k

t
here N k =

∑ I 0 + I
i = I 0 +1

∑ N
n =1 z nki . But the analytical maximum of pa-

ameter θk cannot be solved directly. To solve this problem, we uti-

ize the gradient-ascent method to estimate θk iteratively according

o the following partial derivatives:

∂

∂
[
θk

]
j

ˆ Q

(
�| ̂ �

)
=

1

I

I 0 + I ∑

i = I 0 +1

[

−1

2

tr

(

C

−1
ki

∂C ki

∂
[
θk

]
j

)

+

1

2

y T ki C

−1
ki

∂C ki

∂
[
θk

]
j

C

−1
ki

y ki

]

,

here j = 1 , 2 , 3 .

.2. Learning and prediction strategies

.2.1. MCMC EM learning strategy

By using the ˆ Q -function, we establish the MCMC EM algorithm

or MGPs in Algorithm 1 .

During each iteration of the MCMC EM algorithm, simulated

amples Z 1 , . . . , Z I 0 + I and the parameter set � are updated itera-

ively. Essentially, the hard-cut EM algorithm can be considered as
 special MCMC EM algorithm with only one deterministic sam-

le (I 0 = 0 , I = 1). So, the complexity of the MCMC EM algorithm

s higher than that of the hard-cut EM algorithm. For the conven-

ional EM algorithm, (Q r − Q r−1) / | Q r−1 | < ε is adopted as the con-

ergence criterion, where Q r is the value of Q-function at the end

f the r th iteration. As for the MCMC EM algorithm, ˆ Q r may fluc-

uate during the iterative process because of randomly simulated

amples. Thus, we adopt the relatively long-term convergence cri-

erion as (
ˆ Q r +

ˆ Q r−1

)
−

(
ˆ Q r−2 +

ˆ Q r−3

)]
/
∣∣ ˆ Q r−2 +

ˆ Q r−3

∣∣ < ε.

t is found by experiments that ε = 0 . 002 is a good choice. On the

ther hand, we also adopt r ≤ T to avoid slow convergence. In our

urrent experiments, the algorithm always converges before the

0th iteration, so we set a reasonable number T = 24 .

.2.2. Overall MCMC prediction strategy

To improve the predictive accuracy, we implement an overall

CMC prediction strategy on the learned MGP model. The purpose

f the MGP model is to predict the unknown output y N+1 at a new

nown input x N+1 . As a general prediction strategy, we divide all

raining samples into K components and predict the output of each

370 D. Wu and J. Ma / Neurocomputing 331 (2019) 366–374

Algorithm 1 The MCMC EM algorithm for MGPs.

Input: D, K.

Output: �, { Z i } I 0 + I i =1
,

{
ˆ Q r

}
.

1: Initialize the indicatory matrix Z by k -means clustering on the

input data set { x n } N n =1 . Next, infer ˆ � by the maximum likelihood

estimation. Set the number of current iteration r = 1 .

2: E-step. From

ˆ �, generate a set of simulated samples

Z 1 , . . . , Z I 0 + I by the specialized Gibbs sampling in Appendix

A. From simulated samples, ˆ Q

(
�| ̂ �

)
is derived in Section 4.1.1.

3: M-step. Update � by maximizing ̂ Q

(
�| ̂ �

)
, as shown in Section

4.1.2.

4: Denote the value of ˆ Q-function at the end of the rth iteration

as ˆ Q r and the largest number of iterations as T .

if
[(

ˆ Q r +

ˆ Q r−1

)
−

(
ˆ Q r−2 +

ˆ Q r−3

)]
/
∣∣ ˆ Q r−2 +

ˆ Q r−3

∣∣ < ε or r ≥ T then

stop

else

r = r + 1 and return to the Step 2

end if

C

Table 1

The whole parameter sets for S 1 and S 13 , respectively.

π k μk σ 2
k

θk

S 1 k = 1 1/3 3 1.8 [0.1,0.6,0.0025]

k = 2 1/3 10.5 4.05 [0.25,4,0.0 0 05]

k = 3 1/3 18 1.8 [0.075,0.4,0.0025]

S 13 k = 1 0.2 3 4.5 [0.1,0.6,0.0025]

k = 2 0.2 10.5 10.125 [0.25,4,0.0 0 05]

k = 3 0.2 18 4.5 [0.075,0.4,0.0025]

k = 4 0.2 25.5 10.125 [0.35,2,0.0 0 05]

k = 5 0.2 33 4.5 [0.15,0.6,0.0025]

5

b

t

o

t

r

o

T

t

a

n

b

s

s

s

t

t

S
σ

I

c

s

w

p

p

T

i

S [
π

t

(

t

d

S

S
b

S

o

n

o

o

f

p

a

d

g

A

c
component independently at the input. Finally,we combine all the

outputs together to produce the global predictive output. However,

the classification of training samples is sometimes not reasonable

and may lead to a certain deviation on prediction. To overcome

this problem, we utilize the MCMC sampling to establish an overall

MCMC prediction strategy.

The prediction of y N+1 with the indicatory matrix Z is given by

ˆ y N+1 (Z) =

K ∑

k =1

αN+1 ,k ̂ y N+1 ,k (Z) , (10)

where

αN+1 ,k = E

(
z N+1 = e k | x N+1 , ̂

 �
)

= p
(

z N+1 = e k | x N+1 , ̂
 �
)

= ˆ πk p
(

x N+1 | ̂ μk , ˆ σk

)
/

K ∑

j=1

ˆ π j p
(

x N+1 | ̂ μ j , ˆ σ j

)
,

and ˆ y N+1 ,k (Z) is the prediction of y N+1 when the sample

(x N+1 , y N+1) belongs to the k th component. Therefore, the overall

predictive output is obtained by

ˆ y ∗N+1 =

∑

Z

P
(
Z |D, ̂ �

)
ˆ y N+1 (Z) . (11)

It is noted that computation of this overall predictive output is

still of exponential order. To solve this problem, we adopt the same

MCMC sampling to generate I simulated samples of the indicatory

matrix. Here, the number I is selected in a similar way, but it can

be much larger for the prediction task because the computation

complexity becomes much less than that of the training process in

which a series of MCMC samplings must be made. As a result, we

compute the overall MCMC predictive output by

ˆ y N+1 =

1

I

I 0 + I ∑

i = I 0 +1

K ∑

k =1

αN+1 ,k ̂ y N+1 ,k (Z i) , (12)

where ˆ y N+1 ,k (Z i) = c N+1 ,i C

−1
ki

y ki , and c N+1 ,i =[
C

(
x N+1 , x n ; ˆ θk

)∣∣∣z ni = e k ; n = 1 , . . . , N

]
is a row vector of

(
x N+1 , x n ; ˆ θk

)
.

5. Experimental results

Using synthetic and real-world data sets, we test the MCMC

EM algorithm on classification and prediction by comparison with

three state-of-the-art EM algorithms.
.1. Synthetic data sets

As the structure of the MGP model is more complex and flexi-

le than those of some mixture models, we select 21 typical syn-

hetic data sets, denoted by S 1 , S 2 , . . . , S 21 , from MGP models for

ur experiments.

Our basic data set S 1 contains 240 training samples and 660

est samples generated from three GPs, respectively, i.e., K = 3 . Pa-

ameters of this data set are listed in Table 1 , and the sketch

f six hundred samples of S 1 is already illustrated in Fig. 1 (a).

hree components are different with each other, so we predict

hem by three different Gaussian processes. The data sets S 2 − S 12

re based on S 1 , but change greatly in different ways. (1). S 2 (a

oisy data set):
[
θ1

]
3

=

[
θ3

]
3

= 0 . 05 ;
[
θ2

]
3

= 0 . 01 . (2). S 3 (an un-

alanced data set): π1 = π3 = 0 . 2 ; π2 = 0 . 6 . (3). S 4 (a small data

et): there are 120 training samples and 330 test samples with the

ame parameter setting as S 1 . (4). S 5 (a medium overlapping data

et): σ 2
1 = σ 2

3 = 4 . 5 ; σ 2
2 = 10 . 125 . (5). S 6 : this set comes from S 5 in

he same changing way as S 2 , denoted by S 5 & S 2 . In the following,

he notation S j & S l is of the similar meaning. (6). S 7 : S 5 & S 3 . (7).

 8 : S 5 & S 4 . (8). S 9 (a heavily overlapping data set): σ 2
1 = σ 2

3 = 9 ;
2
2

= 20 . 25 . (9). S 10 : S 9 & S 2 . (10). S 11 : S 9 & S 3 . (11). S 12 : S 9 & S 4 .
n summary, data sets S 1 − S 4 are of small overlap among the

omponents, S 5 − S 8 are of medium overlap, and S 9 − S 12 are of

trong overlap.

As the number of components is important for the MGP model,

e generate nine other data sets S 13 − S 21 with five or ten com-

onents, i.e., K = 5 or K = 10 . In S 13 , there are 400 training sam-

les and 1100 test samples. All parameters for S 13 are listed in

able 1 . Moreover, the sketches of samples of S 5 , S 9 and S 13 are

llustrated in Fig. 1 (b)–(d), respectively. S 14 − S 17 are based on

 13 , but change greatly in different ways. (1). S 14 :
[
θ1

]
3

=

[
θ3

]
3

=
θ5

]
3

= 0 . 05 ;
[
θ2

]
3

=

[
θ4

]
3

= 0 . 01 . (2). S 15 : π1 = π3 = π5 = 1 / 9 ;
2 = π4 = 3 / 9 . (3). S 16 : there are 200 training samples and 550

est samples with the same parameters as S 13 . (4). S 17 : S 14 & S 16 .

5). S 18 : there are 48 training samples and 132 test samples with

he same parameters as S 13 . (6). S 19 : S 14 & S 18 . (7). We generate a

ata set S 20 with 10 components by 2 steps: translate input of

 17 from interval [0,36] to interval [36,72], and get the data set

(2)
17

, then combine S (2)
17

with the data set S 16 . (8). We generate S 21

y similar steps as S 20 , but adopt S 18 and S 19 instead of S 16 and

 17 , respectively. Clearly, each of S 17 − S 19 has a smaller number

f samples, while each of S 20 − S 21 has a larger number of compo-

ents (K = 10) .

For the MCMC EM algorithm, we achieve a higher accuracy

n parameter estimation with a larger number I , but the time

f MCMC procedure scales linearly with I . In fact, as I increases

rom 1 to 15, the prediction accuracy of the MCMC algorithm im-

roves remarkably. As it increases from 15 to 100, the MCMC EM

lgorithm slightly outperforms on prediction. For example, on the

ata set S 8 , the average predicted RMSEs of the MCMC EM al-

orithm with I = 5 , 15 , 100 are 0.1859, 0.1856, 0.1855, respectively.

ctually, we cannot adopt I = 100 because of the prohibitive time

omplexity. We set I = 25 , which is reasonably larger than 15 to

D. Wu and J. Ma / Neurocomputing 331 (2019) 366–374 371

Table 2

The average CARs of the MCMC EM algorithm and comparative algorithms over thirty trials

on synthetic test data sets. In S 20 and S 21 column, the average F1 values are listed for three

algorithms, respectively.

���% S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8

LOOCV EM 98.71 98.61 95.97 98.56 93.96 94.00 82.06 93.13

Hard-cut EM 98.84 98.80 98.47 98.48 90.96 91.51 85.41 91.43

MCMC EM 99 . 13 99 . 13 99 . 13 99 . 11 99 . 11 99 . 11 99 . 34 99 . 34 99 . 34 98 . 93 98 . 93 98 . 93 94 . 72 94 . 72 94 . 72 95 . 09 95 . 09 95 . 09 96 . 53 96 . 53 96 . 53 94 . 30 94 . 30 94 . 30

���% S 9 S 10 S 11 S 12 S 13 S 14 S 15 S 16

LOOCV EM 91 . 83 91 . 83 91 . 83 92 . 12 92 . 12 92 . 12 76.87 90 . 19 90 . 19 90 . 19 93.32 92.85 81.63 92.60

Hard-cut EM 86.13 84.99 76.90 85.96 89.81 89.71 85.66 89.85

MCMC EM 89.64 91.46 90 . 80 90 . 80 90 . 80 86.11 94 . 93 94 . 93 94 . 93 94 . 39 94 . 39 94 . 39 94 . 80 94 . 80 94 . 80 93 . 65 93 . 65 93 . 65

���% S 17 S 18 S 19 S 20 S 21

LOOCV EM 92.84 85 . 60 85 . 60 85 . 60 86 . 08 86 . 08 86 . 08 82.57 −
Hard-cut EM 90.49 84.31 85.25 80.22 71 . 62 71 . 62 71 . 62

MCMC EM 92 . 54 92 . 54 92 . 54 77.93 80.57 84 . 01 84 . 01 84 . 01 69.79

Table 3

The average predicted RMSEs of the MCMC EM algorithm and comparative algorithms over

thirty trials on synthetic test data sets.

· · · × 10 −2 S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8

FNN 10.98 24.85 13.21 14.83 20.07 30.10 20.01 26.64

SVM 9.108 22.28 9.521 10.88 19.01 27.58 17.67 21.23

GP 12.05 23.85 9.863 15.10 18.89 28.83 19.25 22.52

Variational EM 56.21 39.43 89.98 64.90 46.40 42.07 70.08 46.34

LOOCV EM 15.84 25.79 17.87 18.26 20.65 29.58 23.10 23.33

Hard-cut EM 11.40 22.74 13.23 14.01 19.07 28.12 18.03 22.76

MCMC EM 8 . 847 8 . 847 8 . 847 21 . 48 21 . 48 21 . 48 8 . 248 8 . 248 8 . 248 10 . 73 10 . 73 10 . 73 17 . 68 17 . 68 17 . 68 26 . 64 26 . 64 26 . 64 16 . 75 16 . 75 16 . 75 19 . 91 19 . 91 19 . 91

· · · × 10 −2 S 9 S 10 S 11 S 12 S 13 S 14 S 15 S 16

FNN 26.36 35.14 29.96 30.49 23.77 30.71 25.52 25.74

SVM 24.57 32.42 26.54 27.54 22.65 28.76 22.45 22.77

GP 24.63 35.16 26.35 28.95 23.73 28.44 22.39 24.30

Variational EM 54.59 46.17 57.65 48.79 57.80 59.67 64.87 48.47

LOOCV EM 25.43 34.09 29.77 28.17 23.74 30.07 25.86 24.60

Hard-cut EM 25.16 32.69 27.03 28.32 23.53 29.28 23.27 23.51

MCMC EM 23 . 16 23 . 16 23 . 16 31 . 56 31 . 56 31 . 56 24 . 58 24 . 58 24 . 58 26 . 02 26 . 02 26 . 02 21 . 24 21 . 24 21 . 24 27 . 78 27 . 78 27 . 78 21 . 09 21 . 09 21 . 09 21 . 17 21 . 17 21 . 17

· · · × 10 −2 S 17 S 18 S 19 S 20 S 21

FNN 35.10 41.35 47.42 30.67 43.11

SVM 30.80 32.58 40.45 28.04 36.74

GP 32.27 34.94 41.90 30.98 39.81

Variational EM 47.92. 44.26 45.37 46.70 44.51

LOOCV EM 31.80 33.19 41.19 28.88 -

Hard-cut EM 30.76 32.50 39.02 27.97 36.61

MCMC EM 29 . 67 29 . 67 29 . 67 31 . 09 31 . 09 31 . 09 37 . 98 37 . 98 37 . 98 26 . 28 26 . 28 26 . 28 35 . 14 35 . 14 35 . 14

a

M

g

T

e

1

E

o

r

c

c

g

p

c

E

C

i

s

h

s

t

w

n

p

M

V

[

u

i

W

l

g

a

v

S

i
void some special situations. During each Gibbs sampling of the

CMC EM algorithm, twenty five effecti ve simulated samples are

enerated after the first ten initial simulated samples (I 0 = 10).

herefore, the total number of simulated samples during the it-

ration of MCMC EM algorithm is about 500, which is just about

/40 of those of the general MCMC approach. Overall, the MCMC

M algorithm is more efficient than the MCMC approach.

There are some versions of variational EM algorithm, but we

nly compare the open-source code of the variational EM algo-

ithm in [16] in our experiments. We set K as the true number of

omponents, i.e., K = 3 , K = 5 or K = 10 , for the MCMC EM, hard-

ut EM and LOOCV EM algorithms. As for the variational EM al-

orithm, K is selected adaptively on the data set with a Dirichlet

rocess, which always leads to a wrong result. So, it is unfair to

ompare the Classification Accuracy Rates (CARs) of the variational

M algorithm to those of other algorithms. Thus, we just list the

ARs of the MCMC EM, hard-cut EM and LOOCV EM algorithms

n Table 2 . The MCMC EM algorithm generally obtains a better re-

ult of sample classification (or component identification) than the

ard-cut EM and LOOCV EM algorithms. However, on some data
ets, the average CARs of the LOOCV EM algorithm are better than

hose of the MCMC EM algorithm. Clearly, these data sets are al-

ays medium and strong overlapping data sets.

The Root Mean Square Error (RMSE) between y n and ˆ y n for

 = 1 , . . . , N, is calculated by

√ ∑ N
n =1

(
y n − ˆ y n

)2
/N to measure the

rediction error. In Table 3 , we compare four EM algorithms for

GPs with three competitive regression algorithms, i.e., Support

ector Machine (SVM) [27] , Feed-forward Neural Network (FNN)

28] and single Gaussian process (GP). The SVM and FNN are pop-

lar regression-based methods on this type of data sets. In exper-

ments, we utilize the SVM and FNN toolboxes in MATLAB (Math-

orks, Natick, MA). Moreover, we adopt the GPML toolbox [25] for

earning the GP model.

In Table 3 , the average predicted RMSEs of the MCMC EM al-

orithm are always the smallest. The advantage of the MCMC EM

lgorithm is different on these synthetic data sets. In fact, the ad-

antage of the MCMC EM algorithm is remarkable on S 3 , S 8 and

 11 , while it is only a bit better on S 4 . In Tables 2 and 3 , there

s no strong relation between the CAR and the prediction RMSE.

372 D. Wu and J. Ma / Neurocomputing 331 (2019) 366–374

0 50 100 150 200 250 300 350
Input

-20

-10

0

10

20

30

O
ut

pu
t

training sample test sample

Fig. 2. The training and test sample points of the weather data set R 2 .

Table 4

The average predicted RMSEs, as well as the average time consumptions, of the MCMC EM algorithm

and comparative algorithms over thirty trials on real-world test data sets. For R 2 , “average ± stan-

dard deviation” of RMSEs are listed. LM and SMO are short for Levenberg–Marquardt and Sequential

Minimal Optimization, respectively.

Model Algorithm R 1 R 2 R 3 R 4 R 5

RMSE RMSE Time RMSE RMSE RMSE

FNN LM 2.4666 1.0408 ± 0.3570 5.855 0.8886 1.1583 82 , 445

SVM SMO 2.420 1 1.0137 ± 0.0227 32.94 0.8650 0.8490 84 , 710

GP Polak-Ribiere 2.5478 0.9783 ± 0.0 0 0 0 0.937 0.8860 1.1485 83 , 689

MGP Variational EM 27.456 2.1491 ± 3.0687 6.236 2.0823 3.6265 165 , 496

LOOCV EM 14.215 2.0736 ± 0.2371 104.4 3.8705 2.3241 153 , 370

Hard-cut EM 3.2781 0.9612 ± 0.0214 104.1 0.8504 1.0318 79,083

MCMC EM 1 . 9431 1 . 9431 1 . 9431 0.94 4 4 ± 0.0105 113.4 0 . 8357 0 . 8357 0 . 8357 0 . 8354 0 . 8354 0 . 8354 78,238

b

a

t

m

o

c

l

a

p

s

c

g

b

e

3

t

d

s

[

t

a

u

R

r

a

p

o

For example, on S 12 , although the LOOCV EM algorithm has the

best performance on classification, its prediction results are not ac-

curate. When classification and prediction are considered together,

the hard-cut EM algorithm is better than the LOOCV EM algorithm.

On many data sets, the SVM is not only better than the FNN and

GP model, but also slightly better than the hard-cut EM algorithm.

On some data sets, the hard-cut EM algorithm and GP model are

much better than the SVM. The MCMC EM algorithm with the gen-

eral prediction strategy is poorer than the MCMC EM algorithm

with the overall MCMC prediction strategy. Moreover, the MCMC

EM algorithm with the overall MCMC prediction strategy is more

powerful than the hard-cut EM algorithm with the overall MCMC

prediction strategy. Consequently, both the MCMC EM algorithm

and the overall MCMC prediction strategy are important for pre-

diction.

5.2. Real-world data sets

We test and compare the MCMC EM algorithm on 5 real-

world data sets R 1 − R 5 , respectively. Samples in R 1 consist of

the monthly Purchasing Managers Index (%) from the National Bu-

reau of Statistics of the People’s Republic of China. In R 1 , there are

80 training samples and 80 test samples. The weather data sets

R 2 − R 4 consist of daily temperature (°C) averages over the year

from 1961 to 1994 in three weather stations of Canada (i.e., the

Arvida, Bagottvi. and Calgary stations). In each weather data set,

there are 200 training samples and 165 test samples. The Ethernet

data set R 5 consists of the Ethernet speeds along the time, with

600 training samples and 1200 test samples.
For those real-world data sets, there is no real component num-

er and no real indicator, so it is crucial to determine an appropri-

te number of components for a data set. As being well-known,

his is a specific model selection problem related with the finite

ixture model and the EM algorithm. In fact, the model selection

f MGPs is generally a very challenging problem in practical appli-

ations. Certainly, we can implement certain automated model se-

ection algorithms (e.g., [29–32]) directly on the sample points of

 given data set to get a proper value of K , but the results may be

oor since they do not consider the temporal relation between the

ample points. Zhao et al. [33] proposed a synchronously balancing

riterion (SBC) for the model selection of MGPs along the input re-

ion, but the penalty coefficient in the SBC is unknown and should

e carefully determined for a data set. As these methods cannot be

asily used for the model selection of MGPs, we simply implement

0-fold cross validation procedure [34] to make model selection for

he MCMC EM, hard-cut EM, LOOCV EM and FNN algorithms.

Next, we estimate the MGP model on training samples and pre-

ict on test samples. In Fig. 2 , we illustrate the training and test

ample points of R 2 . The stochastic process on the input interval

1,50] is different from those on the other intervals, so it is a mul-

imodal data set. In Table 4 , the first two columns contain models

nd their related algorithms. Four EM algorithms in the second col-

mn are used for MGPs. The indices in Table 4 are the predicted

MSEs on the test data sets. It is clear that the MCMC EM algo-

ithm shows a good prediction result. In addition, the hard-cut EM

lgorithm also performs well on these real-world data sets, and the

rediction performances of SVM, FNN and GP models are almost

n the same level.

D. Wu and J. Ma / Neurocomputing 331 (2019) 366–374 373

5

m

t

2

r

E

v

h

s

c

d

r

6

Q

t

f

t

t

g

o

b

G

t

N

a

c

p

t

s

A

C

A

a

m

t

f

c

i

o

k

w

i

I

Z

T

p

s

i

P

Algorithm 2 The Gibbs sampling for simulated sample Z i .

Input: D , �; Z i −1 =

[
z 1 ,i −1 , . . . , z N,i −1

]
.

Output: Z i = [z 1 i , . . . , z Ni] .

1: Sample z 1 i from P
(
z 1 | z 2 ,i −1 , . . . , z N,i −1 , D, �

)
.

· · · · · ·
n: Sample z ni from P

(
z n | z 1 i , . . . , z n −1 ,i , z n +1 ,i −1 , . . . , z N,i −1 , D, �

)
.

· · · · · ·
N: Sample z Ni from P

(
z N | z 1 i , . . . , z N−1 ,i , D, �

)
.

w

[

Z

I [

a

y

R

[

[

.3. The limitations of the MCMC EM algorithm

Computational time complexity (in seconds) including the

odel selection procedures on R 2 are listed in Table 4 when cus-

om MATLAB code is run on a server [Intel(R) Xeon(R) CPU E5-

680 v4 @ 2.4GHz, 28 Core, 128GB RAM]. The MCMC EM algo-

ithm is quite effective on prediction. As a trade-off, the MCMC

M algorithm is much slower than the FNN, SVM, GP model and

ariational EM algorithm. In comparison with the LOOCV EM and

ard-cut EM algorithms, the MCMC EM algorithm is just slightly

lower, but get the remarkably better results. Fortunately, the time

omplexity of the MCMC EM algorithm may be overcome with the

evelopment of modern hardware, especially the prediction accu-

acy is more concerned in some practical applications.

. Conclusion and discussion

We establish the MCMC EM algorithm for MGPs in which the

-function is approximated by MC simulated samples. Based on

hese simulated samples, the computation of Q-function becomes

easible. In fact, the MCMC EM algorithm combines the merits of

he MCMC approximation and EM algorithm. Experiments on syn-

hetic and real-world data sets demonstrate that our MCMC EM al-

orithm is more effective than the state-of-the-art EM algorithms

n classification and prediction problems.

In the future, we plan to improve the computational complexity

y combining the MCMC EM algorithm and the Mixture of Sparse

P (MSGP) model [21,35] , since the MSGP model can also learn

his type of data sets and is generally faster than the MGP model.

evertheless, the predicted accuracy of the MSGP model is usu-

lly lower than that of the MGP model. Therefore, it is crucial to

onsider the trade-off between the computational complexity and

rediction accuracy. On the other hand, we also plan to improve

he computation for some large data set by speeding up the model

election procedure [22,33] .

cknowledgements

This work is supported by the National Science Foundation of

hina for Grant no. 61171138 .

ppendix A. The Gibbs sampling for the ˆ Q -function

There are many MCMC methods in machine learning and data

nalyses, but most of them are complex to sample the indicator

atrix Z . Fortunately, the Gibbs sampling is a simple yet effec-

ive way to generate simulated samples Z 1 , . . . , Z I 0 + I for the ˆ Q -

unction. In the beginning, we set an initial state Z 0 of the Markov

hain according to the MAP principle, which was already adopted

n the E-step of the hard-cut EM algorithm. That is, z n 0 = e ˆ k if and

nly if

ˆ
 = max

k
p (z n = e k | x n , y n , �) = max

k
πk p (x n | μk , σk ,) p

(
y n | x n , θk

)
,

here y n | x n , θk ∼ N

(
0 ,

[
θk

]
1

+

[
θk

]
3

)
.

On the basis of Z i −1 =

[
z 1 ,i −1 , . . . , z N,i −1

]
, we can generate the

 th simulated sample Z i = [z 1 i , . . . , z Ni] via N steps in Algorithm 2 .

ndicatory matrices Z 1 , . . . , Z I 0 + I are generated sequentially from

 0 .

At the n th step, we generate a component indicator vector z ni .

he total number of steps for sampling all I 0 + I simulated sam-

les is (I 0 + I) × N, so the computational complexity of the Gibbs

ampling procedure is high. As for the posterior probability of z n ,

t can be computed by

(
z n = e k | Z

(−n) , D, �
)

=

p
(
z n = e k ; Z

(−n) , D| �)
∑ K

j=1 p
(
z n = e j ; Z

(−n) , D| �) ,
here the index i is ignored for the specific sampling, Z

(−n) =

z 1 , . . . , z n −1 , z n +1 , . . . , z N] for n = 2 , . . . , N − 1 , Z

(−1) = [z 2 , . . . , z N] ,

(−N) = [z 1 , . . . , z N−1] and

p
(
z n = e k ; Z

(−n) , D| �)
∝ πk p (x n | μk , σk) p

(
y + n,k | x + n,k , θk

)
/

p
(
y −n,k | x −n,k , θk

)
.

n addition, y + n,k =

[
y j | z jk = 1 or j = n

]
and y −n,k =

y j | z jk = 1 and j 	 = n
]

are two complementary vectors for y j ,

nd x + n,k and x −n,k are defined in the same way as y + n,k and

 −n,k .

eferences

[1] C.E. Rasmussen , Evaluation of Gaussian Processes and Other Methods for Non–
Linear Regression, Department of Computer Science, University of Toronto,

1996 Ph.D. thesis .

[2] C. E. Rasmussen, C. K. I. Williams, Gaussian Process for Machine Learning, MIT
Press, Cambridge.

[3] V. Tresp , Mixtures of Gaussian processes, Adv. Neural Inf. Process. Syst. 13
(20 0 0) 654–660 .

[4] L. Xu , M.I. Jordan , G.E. Hinton , An alternative model for mixtures of experts,
Adv. Neural Inf. Process. Syst. 7 (1995) 633–640 .

[5] Y. Yang , J. Ma , Asymptotic convergence properties of the EM algorithm for mix-

ture of experts, Neural Comput. 23 (8) (2011) 2140–2168 .
[6] C. Andrieu , N.D. Freitas , A. Doucet , M.I. Jordan , An introduction to MCMC for

machine learning, Mach. Learn. 50 (1) (2003) 5–43 .
[7] J. Ma , L. Xu , M.I. Jordan , Asymptotic convergence rate of the EM algorithm for

Gaussian mixtures, Neural Comput. 12 (12) (20 0 0) 2881–2907 .
[8] A.P. Dempster , N.M. Laird , D.B. Rubin , Maximum likelihood from incomplete

data via the EM algorithm, J. R. Stat. Soc. Ser. B Methodol. 39 (1977) 1–38 .

[9] D. Wu , Z. Chen , J. Ma , An MCMC based EM algorithm for mixtures of Gaussian
processes, Adv. Neural Netw. ISNN 9377 (2015) 327–334 . LNCS

[10] E. Meeds , S. Osindero , An alternative infinite mixture of Gaussian process ex-
perts, Adv. Neural Inf. Process. Syst. 18 (2006) 883–896 .

[11] C. Yuan , C. Neubauer , Variational mixture of Gaussian process experts, Adv.
Neural Inf. Process. Syst. 21 (2008) 1897–1904 .

[12] C.E. Rasmussen , Z. Ghahramani , Infinite mixture of Gaussian process experts,

Adv. Neural Inf. Process. Syst. 2 (2002) 881–888 .
[13] A. Tayal , P. Poupart , Y. Li , Hierarchical double Dirichlet process mixture of

Gaussian processes, Assoc. Adv. Artif. Intell. (2012) 1126–1133 .
[14] S. Sun , Infinite mixtures of multivariate Gaussian processes, in: Proceedings of

the International Conference on Machine Learning and Cybernetics (ICMLC),
2013, pp. 1011–1016 .

[15] P. Chen , N. Zabaras , I. Bilionis , Uncertainty propagation using infinite mixture

of Gaussian processes and variational Bayesian inference, J. Comput. Phys. 284
(2015) 291–333 .

[16] S. Sun , X. Xu , Variational inference for infinite mixtures of Gaussian processes
with applications to traffic flow prediction, IEEE Trans. Intell. Transp. Syst. 12

(2) (2011) 466–475 .
[17] T. Nguyen , E. Bonilla , Fast allocation of Gaussian process experts, in: Proceed-

ings of the Thirty-First International Conference on Machine Learning (ICML),

2014, pp. 145–153 .
[18] Y. Yang , J. Ma , An efficient EM approach to parameter learning of the mixture

of Gaussian processes, Adv. Neural Netw. ISNN 6676 (2011) 165–174 . LNCS
[19] G. Celeux , G. Govaert , A classification EM algorithm for clustering and two

stochastic versions, Comput. Stat. Data Anal. 14 (3) (1992) 315–332 .
20] Z. Chen , J. Ma , Y. Zhou , A precise hard-cut EM algorithm for mixtures of Gaus-

sian processes, in: Proceedings of the Tenth International Conference on Intel-
ligent Computing (ICIC), 8589, 2014, pp. 68–75 . LNCS

[21] Z. Chen , J. Ma , The hard-cut EM algorithm for mixture of sparse Gaussian pro-

cesses, in: Proceedings of the Eleventh International Conference on Intelligent
Computing (ICIC), 9227, 2015, pp. 13–24 . LNCS

22] L. Zhao, J. Ma, A dynamic model selection algorithm for mixtures of Gaussian
processes, in: Proceedings of the IEEE Thirteenth International Conference on

Signal Processing (ICSP), 2016, pp. 1095–1099, doi: 10.1109/ICSP.2016.7877998 .

https://doi.org/10.13039/501100001809
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0001
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0001
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0002
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0002
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0003
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0003
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0003
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0003
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0004
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0004
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0004
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0005
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0005
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0005
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0005
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0005
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0006
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0006
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0006
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0006
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0007
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0007
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0007
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0007
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0008
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0008
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0008
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0008
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0008
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0009
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0009
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0009
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0010
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0010
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0010
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0011
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0011
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0011
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0012
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0012
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0012
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0012
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0013
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0013
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0014
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0014
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0014
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0014
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0015
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0015
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0015
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0016
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0016
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0016
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0017
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0017
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0017
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0017
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0018
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0018
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0018
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0019
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0019
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0019
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0019
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0019
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0020
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0020
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0020
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0020
https://doi.org/10.1109/ICSP.2016.7877998

374 D. Wu and J. Ma / Neurocomputing 331 (2019) 366–374

t

w

t

d

t

[23] G.C.G. Wei , M.A. Tanner , A Monte Carlo implementation of the EM algorithm
and the poor man’s data augmentation algorithms, J. Am. Stat. Assoc. 85 (1990)

699–704 .
[24] D. Wu , J. Ma , A two-layer mixture model of Gaussian process functional re-

gressions and its MCMC EM algorithm, IEEE Trans. Neural Netw. Learn. Syst.
29 (10) (2018) 4 894–4 904 .

[25] C.E. Rasmussen , H. Nickisch , Gaussian processes for machine learning (GPML)
toolbox, J. Mach. Learn. Res. 11 (2010) 3011–3015 .

[26] S. Sundararajan , S.S. Keerthi , Predictive approaches for choosing hyperparame-

ters in Gaussian processes, Neural Comput. 13 (5) (2001) 1103–1118 .
[27] C.C. Chang , C.J. Lin , LIBSVM: a library for support vector machines, ACM Trans.

Intell. Syst. Technol. 2 (3) (2011) 27 .
[28] D. Svozil , V. Kvasnicka , J. Pospichal , Introduction to multi-layer feed-forward

neural networks, Chemom. Intell. Lab. Syst. 39 (1) (1997) 43–62 .
[29] Y. Cheung , Maximum weighted likelihood via rival penalized EM for density

mixture clustering with automatic model selection, IEEE Trans. Knowl. Data

Eng. 17 (6) (2005) 750–761 .
[30] J. Ma , T. Wang , A cost-function approach to rival penalized competitive learn-

ing (RPCL), IEEE Trans. Syst. Man Cybern. Part B 36 (4) (2006) 722–737 .
[31] J. Ma , J. Liu , The BYY annealing learning algorithm for Gaussian mixture with

automated model selection, Pattern Recognit. 40 (7) (2007) 2029–2037 .
[32] H. Jia , Y.M. Cheung , J. Liu , Cooperative and penalized competitive learning with

application to kernel-based clustering, Pattern Recognit. 47 (2014) 3060–3069 .

[33] L. Zhao , Z. Chen , J. Ma , An effective model selection criterion for mixtures of
Gaussian processes, Adv. Neural Netw. ISNN 9377 (2015) 345–354 . LNCS

[34] S. Arlot , A. Celisse , A survey of cross-validation procedures for model selection,
Stat. Surv. 4 (2010) 40–79 .

[35] J. Quinonero-Candela , C.E. Rasmussen , A unifying view of sparse approximate
Gaussian process regression, J. Mach. Learn. Res. 6 (2005) 1939–1959 .
Di Wu received the B.S. degree in mathematics from

Shaanxi Normal University, Xi’an, China, in 2012, and he
is currently pursuing the Ph.D. degree in applied mathe-

matics with the School of Mathematical Sciences, Peking

University, Beijing, China. His current research interests
include machine learning, data mining and neural net-

works.

Jinwen Ma received the M.S. degree in applied mathe-

matics from Xi’an Jiaotong University in 1988 and the

Ph.D. degree in probability theory and statistics from
Nankai University in 1992. From July 1992 to November

1999, he was a lecturer or associate professor at the De-
partment of Mathematics, Shantou University. From De-

cember 1999, he became a full professor at the Insti-
tute of Mathematic, Shantou University. From September

2001, he has joined the Department of Information Sci-

ence at the School of Mathematical Sciences, Peking Uni-
versity, where he is currently a full professor and Ph.D.

tutor. During 1995 and 2003, he also visited several times
at the Department of Computer Science and Engineering,

he Chinese University of Hong Kong as a Research Associate or Fellow. He also
orked as Research Scientist at Amari Research Unit, RIKEN Brain Science Insti-

ute, Japan from September 2005 to August 2006. He has published over 100 aca-
emic papers on neural networks, pattern recognition, bioinformatics, and informa-

ion theory.

http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0022
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0022
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0022
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0023
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0023
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0023
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0024
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0024
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0024
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0025
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0025
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0025
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0026
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0026
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0026
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0027
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0027
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0027
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0027
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0028
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0028
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0029
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0029
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0029
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0030
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0030
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0030
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0031
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0031
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0031
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0031
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0032
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0032
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0032
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0032
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0032
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0033
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0033
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0033
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0034
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0034
http://refhub.elsevier.com/S0925-2312(18)31377-8/sbref0034

	An effective EM algorithm for mixtures of Gaussian processes via the MCMC sampling and approximation
	1 Introduction
	2 Related works
	3 The GP and MGP models
	3.1 The GP model
	3.2 The MGP model

	4 MCMC EM algorithm
	4.1 Derivation and maximization of -function
	4.1.1 Derivation of -function
	4.1.2 Maximization of -function

	4.2 Learning and prediction strategies
	4.2.1 MCMC EM learning strategy
	4.2.2 Overall MCMC prediction strategy

	5 Experimental results
	5.1 Synthetic data sets
	5.2 Real-world data sets
	5.3 The limitations of the MCMC EM algorithm

	6 Conclusion and discussion
	Acknowledgements
	Appendix A The Gibbs sampling for the -function
	References

