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a b s t r a c t

Bayesian Ying–Yang (BYY) harmony learning system is a powerful tool for statistical learning. Via the BYY
harmony leaning of finite mixtures, model selection, i.e., the selection of an appropriate number of
components for the mixture, can be made automatically during parameter learning on a given dataset. In
this paper, an adaptive gradient BYY harmony learning algorithm is proposed for log-normal mixtures to
implement parameter learning with automated model selection. It is demonstrated by the experiments on
both synthetic and real-world datasets that the proposed BYY harmony learning algorithm not only has
the ability of automated model selection, but also leads to a rather good estimation of the parameters in
the original log-normal mixture.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

In data analysis and information processing, the finite mixture
model is frequently used since there are so many practical cases in
which the data can be regarded as arising from two or more popu-
lations linearly mixed in certain proportions (e.g., [1,2]). Although
there have been already several statistical methods for finite
mixture learning, such as the EM algorithm [3] and the self-
organizing network with hyper-ellipsoidal clustering [4], the num-
ber k of components in the mixture should be known in advance.
However, in many cases this critical information is not available so
that an appropriate value of k must be selected or determined with
the learning of other parameters in the mixture model, which is a
rather difficult task [5]. Actually, since the number of components is
just a scale of the finite mixture model, its selection is usually
referred to as model selection in the literature. Our interest here
focuses on this compound modeling problem of both parameter
learning and model selection of finite mixtures only with a given set
of sample data.

For solving this compound mixture modeling problem, a tradi-
tional statistical approach is to choose the optimal number kn of
components via one of the information, coding and statistical
selection criteria such as Akaike's Information Criterion (AIC) [6]
and Bayesian Inference Criterion (BIC) [7]. That is, given an interval
of possible k and for each integer in it, we implement the EM or

other parameter learning algorithm to estimate the parameters of
the mixture. With all these obtained results, we can determine the
optimal kn according to the criterion, i.e., satisfying the optimal value
of the criterion functionwith k as well as the corresponding estimated
parameters. Along this direction, many kinds of selection criteria have
been established according to different theories or principles. How-
ever, the process of evaluating a criterion incurs a large computational
cost since we need to repeat the entire parameter estimation process
at a number of different values of k. Moreover, all these existing
model selection criteria have their limitations and often lead to a
wrong result.

In the field of artificial neural networks, competitive learning
(CL) can be also applied to the finite mixture modeling in the way
of clustering analysis in which each component is considered just as
a cluster. However, conventional competitive learning algorithms
such as classical competitive learning algorithm [8] and frequency
sensitive competitive learning algorithm [9] can only be considered
as adaptive versions of the k-means algorithm and thus are still
unable to solve the compound mixture modeling problem we are
interested in. Fortunately, Xu et al. [10] proposed a new kind of
competitive learning algorithm, called the rival penalized competi-
tive learning (RPCL) algorithm, that can automatically determine the
number of clusters in a dataset via a learning and de-learning
mechanism. In some extended versions of the RPCL algorithm [11],
clusters were generalized to be the probability distributions like
Gaussians and the associated clustering problems became more
similar to the compound mixture modeling problem. Furthermore, a
cost function theory [12] was established for the Distance Sensitive
RPCL (DSRPCL) algorithm as a generalized version of the original
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RPCL algorithm and the DSRPCL algorithm was further generalized
to the new version with the Mahalanobis distance [13].

Although those RPCL algorithms have already made many
successful practical applications with the new feature of auto-
mated selection of clusters or components for a dataset, they can
only provide an incomplete parameter estimation for the finite
mixture model since the mixing proportions of components are
not involved in the learning process. More precisely, Figueiredo
and Jain [14] proposed an unsupervised learning algorithm for
learning a finite mixture model with the ability of selecting the
number of components through the competitive learning on the
mixing proportions instead of the means vectors in the RPCL
algorithm. Actually, it was established under the framework of the
EM algorithm with the MML (Minimum Message Length) criterion
[15] being applied to the mixing proportions such that the extra
components are discarded as soon as their mixing proportions
become small enough during the learning process. On the other
hand, some variational Bayes approaches [16,17] have been pro-
posed to Gaussian mixture learning with adaptive model selection,
but it is difficult to extend them to the cases of non-Gaussian
mixtures.

With the development of statistical learning, Bayesian Ying–
Yang (BYY) harmony learning system and theory [18,19] have
provided a new tool for solving this compound mixture modeling
problem. Actually, it was already shown in [20] that the compound
modeling problem for Gaussian mixtures can be solved through the
maximization of a harmony function on a specific BI-directional
architecture (BI-architecture) of the BYY system for the Gaussian
mixture model via a gradient learning rule such that an appropriate
number of Gaussians can be automatically allocated for a dataset,
with the mixing proportions of extra Gaussians attenuating to zero.
Later on, the adaptive, conjugate, natural gradient and fixed-point
learning algorithms [21–23] were further established to improve
the efficiency of the harmony function maximization. Moreover, an
annealing learning algorithm was also established through the
maximization of the harmony function on the back-directional
architecture (B-architecture) of the BYY system for Gaussian mix-
ture with automated model selection [24]. As for the cases of non-
Gaussian mixtures, the gradient BYY learning algorithms have been
already established for Poisson and Weibull mixtures [25,26].

In the current paper, we extend the BYY harmony learning
mechanism of parameter learning with automated model selec-
tion to the case of logarithmic normal (log-normal) mixture, which
is another typical non-Gaussian mixture. Under a BI-architecture
of the BYY learning system for log-normal mixtures, an adaptive
gradient learning algorithm for maximizing the harmony function

is proposed to implement the parameter learning of log-normal
mixture with automated model selection. It is demonstrated well
by the experiments on both synthetic and real-world datasets that
the proposed BYY harmony learning algorithm not only automa-
tically determines the number of actual components, i.e., log-
normal distributions, in the sample data, but also leads to a rather
good estimation of the parameters in the original or true log-
normal mixture.

The rest of this paper is organized as follows. We begin with the
description of log-normal distribution and mixture in Section 2.
According to the BYY harmony function, we then derive and
construct the adaptive gradient BYY learning algorithm for log-
normal mixtures and discuss its implementation in Section 3. The
proposed BYY learning algorithm is demonstrated and compared
by the experiments on both synthetic and real-world datasets in
Section 4. Finally, we make a brief conclusion in Section 5.

2. Log-normal distribution and mixture

We begin with a brief introduction of univariate log-normal
distribution. Supposing that U �Nðμ;σ2Þ, i.e, U is a random variable
subject to a Normal or Gaussian (probability) distribution with mean
μ and variance σ2, the random variable (or function) X ¼ expðUÞ is
called to be subject to a (univariate) log-normal distribution. Simi-
larly, we denote it by X � LNðμ;σ2Þ. In fact, the univariate log-normal
distribution is often used to describe a heavy-tailed distribution of a
non-negative random variable such as the age distribution of an
element or instrument and a stock index distribution.

Mathematically, the univariate log-normal probability density
takes the following form:

pðxjμ;σÞ ¼ 1
σx

ffiffiffiffiffiffi
2π

p exp �ðlnx�μÞ2
2σ2

( )
; x40: ð1Þ

This density is derived from the normal probability density and
takes a similar form of it. However, they are essentially different. In
order to explain the differences between log-normal and normal
densities, we plot the curves of the two probability densities.
Typically, we consider their standard probability densities, i.e., the
parameters are set as μ¼ 0, σ ¼ 1. The curves of the standard
univariate log-normal and normal probability densities are given
in Fig. 1(a) and (b), respectively.

As shown in Fig. 1, the value of the log-normal probability
density is positive only when x40. So, a random variable subject
to the log-normal distribution is limited to be positive, which can
match the requirement of many practical problems in the fields
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Fig. 1. The curves of univariate standard log-normal and normal probability densities. (a) The univariate standard log-normal probability density. (b) The univariate standard
normal probability density.
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such as economics, psychology and reliability analysis; while the
value of the normal probability density is positive on the whole real
field so that a random variable subject to the normal distribution is
free. Moreover, the log-normal probability density is asymmetric.
Actually, it increases rapidly and monotonously on ð0; eμ�σ2 Þ,
reaches the maximum at x¼ eμ�σ2

, and then decreases gradually
and monotonously on ðeμ�σ2

; þ1Þ, which makes the probability
density be asymmetric. Actually, it increases rapidly and mono-
tonously in the left interval (or region), but decreases gradually and
monotonously in the right interval. Thus, the log-normal distribu-
tion complies with the actual properties of fatigue experiment and
age distribution model to a large extent. On the other hand, the
normal probability density is symmetric at its maximum point
u¼ μ so that it decreases with ju�μj at the same rate. Therefore,
the log-normal and normal probability densities own different
properties and correspond to different practical problems.

We further introduce the multivariate log-normal distribution.
Let U ¼ ½U1;U2;…;Un� be an n-dimensional (or n-D for short)
random vector subject to the multivariate normal distribution with
mean vector m and covariance matrix Σ. Through the transforma-
tion Xi ¼ expðUiÞ for i¼ 1;2;…;n, we get the random vector (or
function) X ¼ ½X1;X2;…;Xn�. In the same way, the probability
distribution of X is called the multivariate log-normal distribution.
Similarly, we denote it by X � LNðm;ΣÞ. By mathematical derivation,
we can get the multivariate log-normal probability density as
follows:

pðxjm;ΣÞ ¼ 1

ð2πÞn=2jΣj1=2∏n
i ¼ 1xi

exp �1
2
ðln x�mÞTΣ�1ðln x�mÞ

� �
;

ð2Þ

where xi40, i¼ 1;2;…;n and ln x¼ ½lnx1; lnx2;…; lnxn�T .
The multivariate log-normal distribution is an efficient tool for

the studies of economics, psychology and reliability analysis where
all the random variables are positive. In fact, the other multivariate
distributions to describe a group of positive random variables,
such as Gamma, Beta, Pareto and F distributions, are too compli-
cated in their forms to be applied in these fields [27].

For comparison of the multivariate log-normal probability
density with the multivariate normal probability density, we plot
their curved surfaces in the standard forms in Fig. 2 for the 2-D
case, i.e., m¼ ð0;0Þ, Σ ¼ ½10 0

1�.
As shown in Fig. 2, in each dimension, both the 2-D log-normal

and normal probability distributions have the same characteristics as
the univariate log-normal and normal probability distributions do,
respectively. Specifically, the 2-D log-normal probability distribution
takes the characteristics of the univariate log-normal probability
distribution in each dimension. Therefore, it can be easily deduced

that for the general multivariate case, the log-normal probability
distribution owns the properties that each component of the
corresponding random vector is positive and that the probability
density is asymmetric and changes in the way of Fig. 1(a) in each
dimension.

Finally, we turn to the log-normal mixture. In fact, it is a special
type of the finite mixture model:

qðxjΘkÞ ¼ ∑
k

j ¼ 1
αjqðxjθjÞ; ð3Þ

where qðxjθjÞ are the component probability densities or distribu-
tions with parameters θj, k is the number of components in the
mixture, x denotes the variable or variable vector, and αjZ0 are
mixing proportions of the components with the constraint that
∑k

j ¼ 1αj ¼ 1. For clarity, we let Θk ¼ fαj;θjgkj ¼ 1 be the set of all
parameters in the mixture model.

When qðxjθjÞ is just the log-normal probability density given by
Eq. (2), i.e., qðxjθjÞ ¼ pðxjmj;Σ jÞ, the finite mixture model becomes
the log-normal mixture as follows:

pðxjΘkÞ ¼ ∑
k

j ¼ 1
αjpðxjθjÞ ¼ ∑

k

j ¼ 1
αjpðxjmj;Σ jÞ: ð4Þ

As the log-normal probability distribution is very common in
practical applications, the log-normal mixture is often used in the
fields of measurements, communications and finical analysis such
as the distribution of red blood cell volume [28] and the modeling
of the co-channel interference in wireless communication [29]. If
the number k of log-normal components is known in advance, we
can implement the EM algorithm [3] to estimate the parameters in
the mixture with a dataset. As pointed in the previous section, the
EM algorithm is constructed under a framework of maximum
likelihood and thus unable to make model selection for log-normal
mixture only with a set of sample data. In the following, based on
the theory of BYY harmony learning, we will construct an adaptive
gradient BYY learning algorithm for log-normal mixtures to make
model selection automatically during parameter learning.

3. An adaptive gradient BYY learning algorithm for log-normal
mixtures

For the compound finite mixture modeling, a BI-architecture of
the BYY learning system has been established such that its BYY
harmony learning is equivalent to the parameter learning with
automated model selection on finite mixture [20,22,25]. Actually,
given a sample dataset Dx ¼ fxtgNt ¼ 1 from the original finite mixture,
the learning task on this architecture is to maximize the following
harmony function on the finite mixture model Eq. (3) with the

Fig. 2. The surfaces of the 2-D standard log-normal and normal probability densities. (a) The standard log-normal probability density. (b) The standard normal probability density.
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parameter set Θk ¼ fαj;θjgkj ¼ 1:

JðΘkÞ ¼
1
N

∑
N

t ¼ 1
∑
k

j ¼ 1

αjqðxt jθjÞ
∑k

i ¼ 1αiqðxt jθiÞ
ln½αjqðxt jθjÞ�: ð5Þ

According to the experiments on the finite mixtures given in
[20–26], the maximization of JðΘkÞ was able to make model
selection automatically during parameter learning. In fact, as long
as we set k to be larger than the number kn of actual components
(like Gaussians or Poissons) in the sample data, it can make kn

components from the estimated mixture match the actual compo-
nents, and force the mixing proportions of the other k�kn extra
components to attenuate to zero. In the same way, we now take
qðxjθjÞ in Eq. (5) as a log-normal density pðxjθjÞ ¼ pðxjmj;Σ jÞ given
by Eq. (2) and construct an adaptive gradient BYY learning algo-
rithm to maximize the harmony function JðΘkÞ for log-normal
mixture.

3.1. Algorithm derivation

Let UjðxÞ ¼ αjqðxjθjÞ for j¼ 1;2;…; k, JðΘkÞ can be represented by
the sum of the functions JtðΘkÞ;1rtrN as follows:

JðΘkÞ ¼
1
N

∑
N

t ¼ 1
JtðΘkÞ; JtðΘkÞ ¼ ∑

k

j ¼ 1

UjðxÞ
∑k

i ¼ 1UiðxtÞ
lnUjðxtÞ: ð6Þ

For convenience of derivation, we utilize the following softmax
representations of the mixing proportions αj:

αj ¼
expðβjÞ

∑k
i ¼ 1expðβiÞ

; j¼ 1;2;…k; ð7Þ

where �1oβjoþ1, j¼ 1;2;…; k. In such a way, αj computed by
Eq. (7) with any group βj will certainly satisfy the conditions:
αjZ0, ∑k

j ¼ 1αj ¼ 1.
With the above preparations, we can get the partial derivatives

of JtðΘkÞ per sample xt with respect to βj and θj as follows:

∂JtðΘkÞ
∂βj

¼ ∑
k

i ¼ 1

∂JtðΘkÞ
∂UiðxtÞ

∂UiðxtÞ
∂βj

¼ 1
qðxt jΘkÞ

∑
k

i ¼ 1
1� ∑

k

l ¼ 1
ðpðljxtÞ�δilÞ lnUlðxtÞ

" #
ðδij�αjÞ�UiðxtÞ;

ð8Þ

∂JtðΘkÞ
∂θj

¼ ∑
k

i ¼ 1

∂JtðΘkÞ
∂UiðxtÞ

∂UiðxtÞ
∂θj

¼ 1
qðxt jΘkÞ

1� ∑
k

l ¼ 1
ðpðljxtÞ�δjlÞ lnUlðxtÞ

" #
αj
∂qðxt jθjÞ

∂θj
; ð9Þ

where δij is the Kronecker function and pðljxÞ ¼ αlqðxjθlÞ=qðxjΘkÞ.
Let λiðtÞ ¼ 1�∑k

l ¼ 1ðpðljxtÞ�δilÞlnUlðxtÞ for i¼ 1;…; k. According
to Eqs. (8) and (9), we get the following adaptive gradient learning
rule of βj and θj:

Δβj ¼
η

qðxt jΘkÞ
∑
k

i ¼ 1
λiðtÞðδij�αjÞUiðxtÞ; ð10Þ

Δθj ¼
ηλjðtÞαj

qðxt jΘkÞ
∂qðxt jθjÞ

∂θj
¼ ηqðjjxtÞλjðtÞ

∂ ln qðxt jθjÞ
∂θj

; ð11Þ

where η40 is the learning rate which starts from a reasonable
initial value and decreases gradually to zero in the Robbin–Monro
stochastic approximation manner [30].

For the log-normal mixture model in which qðxjθjÞ ¼ pðxjmj;Σ jÞ,
qðxjΘkÞ ¼ pðxjΘkÞ are given by Eq. (4), we have the specific partial
derivatives of the log-normal density function with respect to mj

and Σj as follows:

∂pðxt jmj;Σ jÞ
∂mj

¼ pðxt jmj;Σ jÞΣ �1
j ðln xt�mjÞ; ð12Þ

∂pðxt jmj;Σ jÞ
∂Σ j

¼ 1
2
pðxt jmj;Σ jÞ½Σ �1

j ðln xt�mjÞðln xt�mjÞT � In�Σ �1
j ;

ð13Þ
where In is an n-dimensional identity matrix. Substituting Eq. (12)
into Eq. (11), we have the adaptive gradient learning rule of mj:

Δmj ¼ ηpðjjxtÞλjðtÞΣ �1
j ðln xt�mjÞ: ð14Þ

On the other hand, if we directly use the adaptive derivative with
respect to Σj given in Eq. (13) for the gradient learning, Σj cannot
be guaranteed to be always positive definite after each iteration. In
order to overcome this difficulty, we can utilize the decomposition
technique suggested in [21]: Σ j ¼ BjB

T
j , where Bj is a nonsingular

square matrix. Via this decomposition, we can get the following
adaptive gradient learning rule of Bj:

ΔvecBj ¼
η
2
pðjjxtÞλjðtÞvec

n
Σ�1

j ðln xt�mjÞðln xt�mjÞT � I
i
Σ�1

j

h o∂ðBjB
T
j Þ

∂Bj
;

ð15Þ
where vec(M) denotes the vector obtained by stacking the column
vectors of the matrix M and the detailed expression of ∂ðBjB

T
j Þ=∂Bj

can be found in [21].
Summing up the results of Eqs. (10), (14) and (15), we get the

basic adaptive gradient learning algorithm for maximizing the
harmony function on log-normal mixture. In each learning or
updating iteration with sample xt, βj;mj and Bj will be adaptively
updated. Accordingly, αj and Σj will be also updated. As long as the
difference of the harmony functions at the two sequential steps is
small enough, the gradient learning algorithmwill stop and output
the current values of the parameters in the log-normal mixture.

3.2. Algorithm implementation

We further improve our proposed adaptive gradient learning
algorithm for log-normal mixtures and make it to be implemented
efficiently. Firstly, we need to set an initial value k for the number
of log-normal densities in the mixture which is greater than the
true number kn of actual log-normal densities in the original
mixture or sample data. That is, we need to overestimate the
number of log-normal densities in the dataset. Clearly, this is an easy
task, but we should avoid making a large overestimate. The initial
values of βj can be set arbitrarily. However, the initial values of mj

can be selected from the logarithms of the samples in the dataset.
More efficiently, they can be learned via a RPCL procedure [12]. As
for the covariance matrix Σj, since the decomposition Σ j ¼ BjB

T
j is

used, we need only to set the initial value of each Bj as an arbitrary
nonsingular square matrix. In order to guarantee Σj being always
nonsingular, we can add a check and revision procedure in the
update of Σj such that, supposing that Σ j ¼ ðσj

ilÞd�d, if jΣ jjo10�14,
we let σii ¼Σd

l ¼ 1jσk
ilj directly.

In the above setting, there are k�kn extra components in the
mixture model of the algorithm. In order to speed up the conver-
gence of the algorithm, we can add a check and deleting procedure
in the iteration such that some extra components can be immedi-
ately discarded if their mixing proportions are low enough and, on
the other hand, we can also combine two similar components into a
new component to eliminate one extra component. To realize
the above idea, we start to set, by the prior experimental experi-
ences, two threshold values: Threshholdα , and Γm, which respec-
tively represent the threshold value of the component with too low
mixing proportion and the threshold value of the difference
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between two mean vectors which are close enough to be combined.
With these preparations, we can conduct the following two simple
schemes at each iteration of the algorithm:

Scheme 1: Find out αjn ¼ arg min1r jrkαj (the component with
the lowest mixing proportion). If αjnoThresholdα, we delete this
component and modify the other parameters and probability
densities if necessary.

Scheme 2: Find out γin jn ¼minia j‖mi�mj‖. If γin jn oΓ�1
m , the

components in&jn are considered similar enough to be combined.
The parameters of the new component, i.e., αnew;βnew;mnew;Bnew ,
can be computed as follows:

αnew ¼ αin þαjn ; ð16Þ

βnew ¼ ln
αin þαjn

αin
expðβin Þ

� �
; ð17Þ

mnew ¼ αin

αin þαjn
min þ

αjn

αin þαjn
mjn ; ð18Þ

Bnew ¼ r
αin

αin þαjn
Bin þ

αjn

αin þαjn
Bjn

 !
; ð19Þ

where r represents an adjusting scale factor for the covariance
matrix of the combined component, generally satisfying 1orr2.

Combining these two schemes in the algorithm, we can obtain a
flexible adjustment of k during the BYY harmony learning such that
the algorithm is not only speeded up, but also insensitive to the
initial setting of k even if it is any integer in the interval ½kn;3kn�. For
the other parameters in the log-normal mixture, a better initializa-
tion is also necessary. We set the learning rate by ηðtÞ ¼ η0ð1=tpÞ,
where t is the time, η0 can be set around 0.001, and the exponent p
can be set around 0.05. Actually, if η0 and p are set to be greater, the
algorithm will converge too quickly with a wrong result. If they are
set to be smaller, the algorithm will consume too much time. For
the stop criterion: jΔJj ¼ jJðΘnew

k Þ� JðΘold
k ÞjoThresholdJ , the thresh-

old value ThresholdJ was generally set by 10�5 in the BYY learning
algorithms for Gaussian mixtures [20,22]. But in our experiments
for log-normal mixtures, such a value may be too large. In fact, as
long as jΔJjo10�6, the change of the parameters is small enough
to be ignored. Thus, we can set ThresholdJ to be 10�6, which can
guarantee the learning precision as well as the learning efficiency to
our demand.

Thresholdα is an important threshold value which can consid-
erably affect the learning efficiency of model selection. If it is too
large, some components that should be kept will be wrongly
discarded. Otherwise, if it is too small, the effect of the discarding
extra components is not obvious. According to our experimental
results, Thresholdα can be set around 0.05. For the imbalanced
cases where mixing proportions of certain actual proportions are
very small, Thresholdα can be set to be much smaller. Γm is another
threshold value for model selection. If it is too small, some actual
components will be combined. Otherwise, if it is too large, some
extra components will not be combined and deleted. According to
our experimental results, we have found that its reasonable range
is 0.4–0.7. Generally, if Γm is set to be 0.6, the algorithm can
effectively find those similar components to be combined and
prevent the extra computation.

For clarity, we finally summarize our improved adaptive
gradient learning algorithm for log-normal mixtures in Fig. 3.

4. Experimental results

In this section, the experiments on both various synthetic and
real-world datasets are carried out to demonstrate the perfor-
mance of our proposed adaptive gradient BYY learning algorithm

for log-normal mixtures on both model selection and parameter
estimation, with being compared with those of the other existing
learning algorithms.

4.1. Simulation results

4.1.1. On 2-D synthetic datasets
We begin to test the efficiency of the proposed algorithm on four

typical 2-D synthetic datasets, which are shown in Fig. 4. In fact,
they are generated from four typical log-normal mixtures with
different structures and overlaps among the components: (a) S1 is
generated from a mixture of 4 log-normal distributions with the
same covariance matrix and mixing proportions; (b) S2 is generated
from a mixture of 4 log-normal distributions with different covar-
iance matrix and mixing proportions; (c) S3 is generated from a
mixture of 3 log-normal distributions with special shapes and
different mixing proportions; (d) S4 is generated from a mixture
being similar to that of S2, but only with a small number of samples.
For visualization, two axes in Fig. 4 are both in log measure. The
true parameters of these four datasets are listed in Table 1.

We implement our proposed algorithm on these four 2-D
datasets with the initial parameters selected as discussed pre-
viously in Section 3.2. Specifically, k is set to be 7 or 6 and the
initial mean vectors are set via a RPCL procedure of 200 iterations
on the logarithms of the samples in the corresponding dataset. In
order to test the ability of correct model selection, we implement
the proposed algorithm on each of the datasets for 500 times and
get the correct model selection percentage over 500 simulation
results. Actually, the correct model selection percentages of the
proposed algorithm on the four datasets are listed in the second
row of Table 2. According to these data, we can find that the
proposed algorithm has a rather high probability of making correct
model selection automatically on these datasets. But it can be also
found that the correct model selection percentage can only reach
100% at S1. As the shapes of components in the dataset become
elliptical from S1 to S3, or the number of samples becomes small
like S4, the correct model selection percentage decreases slowly
but obviously.

On the other hand, we can further find that whenmodel selection
is made correctly, the actual log-normal densities as well as their
mixing proportions are correctly located by the corresponding
estimated or learned parameters. That is, the true parameters of
the actual log-normal densities, as listed in Table 1, are estimated
with a quite good accuracy, which can be seen from Table 3 where
the average estimates of the true parameters with the standard
deviation over 100 simulation results of correct model selection for
those 2-D synthetic datasets are listed. Again, it can be still found
that the estimation accuracy of some parameters may decrease as
the components in the dataset become elliptical or the number of
samples becomes small. The deviation between the estimated and
true parameters will be further discussed later.

We further consider six heterogeneous 2-D or higher dimen-
sional synthetic datasets of log-normal mixtures with a larger
number of components of different elliptical shapes (i.e.,covar-
iance matrixes) or a higher overlap among the components shown
in Fig. 5. Specifically, D1–D4 are 2-D synthetic datasets with 6 or
9 components, being elliptical differently, imbalanced and over-
lapped. D5 and D6 are 3-D and 4-D synthetic datasets composed of
incompact and imbalanced components, which can be seen clearly
from Fig. 5. Both of these two higher dimensional datasets consist
of four components, and their mixing proportion vector or
distributions are (0.1, 0.7, 0.1, 0.1) and (0.08, 0.17, 0.5, 0.25),
respectively. We implement our proposed algorithm on each of
these six heterogeneous datasets for 100 times and get the correct
model selection percentages over 100 experimental results, being
listed in the second row of Table 4. According to these percentages,
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Fig. 3. The pseudo-code of the adaptive gradient learning algorithm for log-normal mixtures.
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it can be found that there is still a high probability over or equal to
0.95 for the event that the actual log-normal densities in such a
heterogeneous dataset can be located correctly, with the extra
components discarded or combined. That is, model selection can
be made automatically and correctly in each case with a rather
high probability. As for parameter estimation, the average estima-
tion accuracy for each parameter can be still maintained relatively
high except for the case of the dataset (b) in Fig. 5. The major

reason is that in such a dataset, there is a heavy overlap among
the actual components. Particularly in this case, it is found by a
simulation experiment that the resulted mixing proportion vector
α̂ is (0.213631, 0.218454, 0.144483, 0.166157, 0.156863, 0.100411),
while the true mixing proportion vector is (0.2, 0.2, 0.15, 0.15, 0.15,
0.15). It can be seen from this result that the parameter estimation
is not as good as those on S1–S4, but we can still accept it in such a
component-overlapping situation.

As a result, on each of above synthetic datasets which can be
heterogeneous or higher dimensional, our proposed algorithm can
make model selection automatically and lead to a rather good
estimation of the parameters in the original log-normal mixture.
Actually, the components in such an original log-normal mixture can
be of various forms like the simple cases with the same covariance
matrix and number of samples, or the complicated cases with
special shapes, different covariance matrixes or mixing proportions,
and the special case with a small number of samples.
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Fig. 4. The sketches of four typical 2-D synthetic datasets of log-normal mixtures. (a) Set S1. (b) Set S2. (c) Set S3. (d) Set S4.

Table 1
The true parameters of log-normal mixtures to generate four typical 2-D synthetic
datasets.

Set j mj1 mj2 σ11
j σ12

j σ22
j αj Nj

S1 (N¼1600) 1 2.50 0 0.50 0 0.50 0.25 400
2 0 2.50 0.50 0 0.50 0.25 400
3 �2.50 0 0.50 0 0.50 0.25 400
4 0 �2.50 0.50 0 0.50 0.25 400

S2 (N¼1600) 1 0.25 0 0.45 �0.25 0.55 0.34 544
2 0 2.50 0.65 0.20 0.25 0.28 448
3 �0.25 0 1 0.10 0.35 0.22 352
4 0 �2.50 0.30 0.15 0.80 0.16 256

S3 (N¼1200) 1 0.25 0 0.10 �0.20 1.25 0.50 600
2 0 2.50 1.25 0.35 0.15 0.30 360
3 �1 �1 1 �0.80 0.75 0.20 240

S4 (N¼200) 1 0.25 0 0.28 �0.20 0.32 0.34 68
2 0 2.50 0.34 0.20 0.22 0.28 56
3 �0.25 0 0.50 0.04 0.12 0.22 44
4 0 �2.50 0.10 0.05 0.50 0.16 32

Table 2
The correct model selection percentages of the AGL-BYY, UL-MML, EM-AIC and EM-
BIC algorithms for log-normal mixtures on four 2-D synthetic datasets.

Algorithm S1 (%) S2 (%) S3 (%) S4 (%)

AGL-BYY 100 99.8 99.4 98
UL-MML 94.4 73.4 90.2 60.6
EM-AIC 74.6 50 91 56
EM-BIC 73.4 63.4 99.8 56.2
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4.1.2. Comparison with the other possible approaches
Furthermore, we compare our proposed algorithm with the

MML-based unsupervised learning algorithm [14] particularly for
log-normal mixtures, which has been considered as a typical and
powerful existing learning algorithm for the finite mixture model-
ing with automated model selection in a similar way. For con-
venience, our proposed algorithm is referred to as the AGL-BYY
algorithm, while the unsupervised learning algorithm for log-
normal mixtures based on the MML criterion is referred to as
the UL-MML algorithm. We also compare our proposed algorithm
with the EM algorithms for log-normal mixtures together with the
AIC and BIC model selection criteria, which are referred to as the
EM-AIC and EM-BIC algorithms, respectively.

As for the comparison on model selection, we also implement
the UL-MML, EM-AIC and EM-BIC algorithms on each of the four
2-D typical synthetic datasets S1–S4 for 500 times and compute
the correct model selection percentage over 500 experimental
results, being listed in Table 2. Moreover, we implement the
UL-MML, EM-AIC and EM-BIC algorithms on each of the six
heterogeneous datasets D1–D6 for 100 times and compute the
correct model selection percentage over 100 experimental results,
being listed in Table 4. On the other hand, we further compute the
average parameter estimation errors and running times of the
AGL-BYY, UL-MML, EM-AIC and EM-BIC algorithms over 100
experimental results of correct model selection on each of the
four typical synthetic datasets, being listed in Table 5, where for a
parameter θ, Δθ¼ ‖θn� θ̂‖, where θn is its true value, while θ̂ is
its estimated value via the learning algorithm. The experiments
are carried out on a server with HP Z820 (64G mem, 16 cores and
32 threads, CPU Intel Xeon E5-26500@2.00 GHZ).

According to those data listed in Tables 2, 4 and 5, we have
found the following facts: (1) As for model selection, the AGL-BYY
algorithm outperforms the UL-MML, EM-AIC and EM-BIC algo-
rithms considerably on many aspects. Actually, as the dataset
becomes more incompact, imbalaced and overlapped or has the
less number of samples, the AGL-BYY algorithm performs much
better than these three compared algorithms. In some synthetic
datasets with elliptic components or a small number of samples,
the AGL-BYY algorithm can determine the correct number of
components, but the UL-MML algorithm often leads to a wrong
number of components, which is consistent with the experimental
results of our recently proposed competitive EM algorithm for
Gaussian mixtures using the BYY harmony criterion instead of the
MML criterion [31]. (2) For parameter estimation, the convergence

results of the four learning algorithms are similar. That is, the
deviations of any two resulted estimations are almost same. But
the deviation of the AGL-BYY algorithm is slightly larger than
those of the UL-MML, EM-AIC and EM-BIC algorithms, being
equivalent to the EM algorithm at the final stage with the number
of the components being correctly selected. This is reasonable
since the AGL-BYY algorithm is involved in the competitive
learning for automated model selection and thus produces certain
deviation, while the EM algorithm leads to a maximum likelihood
estimate which is consistent with the true parameter. (3) The
convergence speed of the UL-MML algorithm is much faster than
that of the AGL-BYY algorithm, which may be caused by the model
selection mechanism in the AGL-BYY algorithm that incurs a larger
computation. But the convergence speed of the EM-AIC and EM-
BIC algorithms is much slower than that of the AGL-BYY algorithm.
As model selection is so important here, we can think that our
proposed algorithm is more efficient and powerful than the MML-
based unsupervised learning algorithm for log-normal mixtures.

On the other hand, according to probability theory, if X is a
normal random variable, by definition, Y ¼ expðXÞ becomes a log-
normal random variable. Oppositely, if Y is a log-normal random
variable, its log transformation, i.e., log ðYÞ, becomes a normal
random variable. Because each datum generated from a log-
normal mixture is generated from one of the log-normal distribu-
tions, its log transformation can be considered being generated
from a normal or Gaussian distribution. So, we can transform the
sample data of a log-normal mixture to be those of a Gaussian
mixture via the log transformation. In this way, we can implement
a BYY learning algorithm for Gaussian mixtures on the trans-
formed dataset to get the log-normal mixture learning, i.e., the
model selection and parameter estimation for log-normal mixture.
Is this normalization transformation approach better than our
proposed adaptive gradient BYY learning algorithm? In order to
answer this question, we compare our proposed algorithm with
the fixed-point BYY learning algorithm [23], a typical BYY learning
algorithm for Gaussian mixtures, on the transformed dataset. It is
found by the experimental results that our proposed algorithm is
much better than the normalization transformation approach. The
reason can be explained as follows. As the normalization transfor-
mation, i.e., log transformation, makes the scale of a variable
smaller, the overlap among the components in the transformed
data becomes heavier than that in the original data. Since the BYY
harmony learning becomes weaker on both model selection and
parameter estimation as the overlap among the components in the

Table 3
The average estimates of the true parameters over 100 simulation results on each of the four 2-D synthetic datasets.

Dataset j m̂j1 m̂j2 σ̂ j
11 σ̂ j

12 σ̂ j
22

α̂ j

S1 ðk¼ 7Þ 1 2.5767170.0001 0.0014770.0002 0.3811270.0003 �0.0231270.0000 0.4481270.0002 0.2512770.0001
2 0.0745170.0001 2.4895070.0000 0.4411270.0001 �0.0125170.0001 0.5115670.0001 0.2504870.0000
3 �2.5360470.0001 0.0780970.0001 0.4355370.0001 �0.0004670.0000 0.4587170.0000 0.2456870.0000
4 �0.0385770.0000 �2.5482470.0000 0.4449270.0001 0.0255570.0001 0.4887170.0002 0.2525870.0001

S2 ðk¼ 7Þ 1 2.5151870.0000 �0.0355870.0001 0.4481370.0003 �0.2368570.0001 0.5480370.0002 0.3519370.0003
2 0.0205470.0000 2.5083370.0001 0.6464470.0002 0.1821770.0001 0.27333470.0002 0.2876970.0001
3 �2.6064670.0000 �0.0158370.0001 0.9249970.0002 0.0966470.0006 0.3402570.0001 0.2051970.0002
4 �0.0363570.0001 �2.4678270.0002 0.3255570.0002 0.0862870.0001 0.7354370.0001 0.1551970.0001

S3 ðk¼ 6Þ 1 2.4608070.0003 �0.0071270.0003 0.1011170.0003 �0.1843970.0003 1.2024670.0010 0.5171870.0004
2 0.1104070.0007 2.5349670.0002 1.4277570.0008 0.3937570.0001 0.1632870.0001 0.2930770.0002
3 �0.9452170.0012 �1.0294670.0011 1.1797970.0008 �0.9679270.0004 0.9285970.0009 0.1897570.0002

S4 ðk¼ 7Þ 1 2.4263670.0001 0.0280170.0000 0.3070070.0001 �0.2077070.0000 0.3181270.0001 0.3412970.0000
2 �0.0759170.0000 2.4458070.0000 0.3199470.0000 0.2026770.0000 0.2834670.0001 0.2902470.0000
3 �2.5014770.0000 �0.0832970.0001 0.5069970.0003 0.0503470.0001 0.1140770.0000 0.2092670.0000
4 �0.0706570.0000 �2.3861270.0000 0.0624270.0000 0.0065470.0001 0.5470870.0000 0.1592170.0000
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sample data becomes heavier, the proposed algorithm is thus
better than the normalization transformation approach.

4.1.3. Further discussions
We finally discuss the performance of the adaptive gradient

BYY learning algorithm on the general datasets. For clarity, we
begin to discuss the conditions by which the proposed algorithm

can lead to the correct model selection. In fact, this problem was
already investigated theoretically on the general finite mixture
model in [32] and it was found that the correct convergence of a
BYY harmony learning algorithm strongly depends on the overlap
among the actual components in the original or true mixture.
Specifically, when the overlap is low enough, the BYY harmony
learning algorithm can lead to the correct model selection. So, as
long as the overlap among the actual log-normal components in
the original mixture keeps a low level, our proposed algorithm can
converge with correct model selection. Oppositely, when any two
actual log-normal distributions are strongly overlapped, our pro-
posed algorithm may lead to a wrong result. This fact is demon-
strated well by the above experiments as well as the other
experiments on the different kinds of datasets. Moreover, it can
be observed that our proposed algorithm is more robust than the
BYY harmony learning algorithms for Gaussian mixtures. Actually,
our proposed algorithm can converge correctly in the datasets
with a heavy overlap like the dataset (b) given in Fig. 5, but, in a
dataset with such a level of overlap, the fixed-point BYY learning
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Fig. 5. The sketches of six heterogeneous datasets, where a–d are four 2-D synthetic datasets of log-normal mixtures with 6 or 9 components bing elliptical,imbalanced and
overlapped, while e and f are 3-D and 4-D synthetic datasets with incompact and imbalanced components. (a) Set D1. (b) Set D2. (c) Set D3. (d) Set D4. (e) Set D5. (f) Set D6.

Table 4
The correct model selection percentages of the AGL-BYY, UL-MML, EM-AIC and EM-
BIC algorithms for log-normal mixtures on six heterogeneous datasets.

Algorithm D1 (%) D2 (%) D3 (%) D4 (%) D5 (%) D6 (%)

AGL-BYY 99 98 99 100 95 100
UL-MML 54 80 62 77 40 79
EM-AIC 13 21 6 60 14 8
EM-BIC 40 27 10 70 27 35
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algorithm [23] for Gaussian mixtures generally leads to a wrong
result.

By the simulation experiments, we also find that the annihila-
tion and combination mechanisms on the components not only
speeds up the convergence of the algorithm, but also improve
the convergent results of the algorithm, especially on the sample
dataset with a relatively high overlap among the actual log-normal
distributions. Indeed, there are many cases like the dataset (b) given
in Fig. 5 on which the conventional adaptive gradient learning
algorithm given only by Eqs. (10), (14) and (15) often leads to a
wrong model selection, but our proposed adaptive gradient BYY
learning algorithmwith the annihilation and combination mechan-
isms can always get a good result. As for the threshold values for the
annihilation and combination mechanisms, we can get their reason-
able or optimal values by some searching techniques. It can be even
found by simulation experiments that once they are optimally
selected, they are applicable to a general dataset under the small
overlap assumption and lead to a stable result.

By the other simulation experiments we further find that
the proposed algorithm works well for both model selection and
parameter estimation on the dataset with a large number compo-
nents (e.g., 15 log-normal distributions) or a larger number of
samples (e.g., N¼8000), or being in a higher dimensional space
(e.g., 15-dimensional space) as long as the actual log-normal dis-
tributions are separated at a degree as those in the above datasets.
Furthermore, it can be found by the simulation experiments that
the parameter estimation accuracy maintains a similar level with
the increase of the space dimension or number of components in the
mixture. As for the increase of number of samples in the dataset, the
parameter estimation accuracy tends to be better.

In a summary, our proposed adaptive gradient BYY learning
algorithm can be implemented efficiently for parameter estima-
tion on log-normal mixture with automated model selection as
long as the actual log-normal components in the sample data are
separated in a certain degree. Moreover, it considerably outper-
forms the unsupervised learning algorithm [14] for log-normal

Table 5
The comparison of the AGL-BYY, UL-MML, EM-AIC and EM-BIC algorithms on the parameter estimation accuracy and the running time.

Dataset Algorithm Δμ ΔΣ Δα Running time (s)

S1 (k¼7) AGL-BYY 0.04551670.00004 0.03353770.00005 0.00216070.00000 24,932.3
UL-MML 0.04160470.00006 0.02511270.00004 0.00064370.00003 6305.5
EM-AIC 0.04160470.00000 0.02511770.00000 0.00064470.00000 81,037.1
EM-BIC 0.04160470.00000 0.02511770.00000 0.00064470.00000 102,800.4

S2 (k¼7) AGL-BYY 0.05115570.00021 0.03759870.00009 0.00511270.00003 27,753.7
UL-MML 0.05281870.03764 0.03602370.04092 0.00353070.01071 7290.5
EM-AIC 0.04899470.00000 0.03189870.00000 0.00242170.00000 85,315.5
EM-BIC 0.04899470.00000 0.03189870.00000 0.00242170.00000 104,300.1

S3 (k¼6) AGL-BYY 0.04605970.00052 0.08768670.000368 0.01148870.00036 24,976.2
UL-MML 0.04269470.00004 0.06688770.00011 0.00223670.00008 4514.7
EM-AIC 0.04268070.00000 0.06693970.00000 0.00154970.00000 41,184.8
EM-BIC 0.04268070.00000 0.06693970.00000 0.00154970.00000 51,370.6

S4 (k¼7) AGL-BYY 0.06263070.00002 0.02114870.00004 0.00576770.00000 6331.3
UL-MML 0.06626570.04116 0.03345170.05162 0.00998070.01350 178.1
EM-AIC 0.06037270.00000 0.002609670.00000 0.00465370.00000 4619.8
EM-BIC 0.06037270.00000 0.002609670.00000 0.00465370.00000 5236.6
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Fig. 6. The sketches of five stock index mixed datasets. (a) Dataset 1: G1, (b) Dataset 2: G2, (c) Dataset 3: G3, (d) Dataset 4: G4, (e) Dataset 5: G5.
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mixtures on automated model selection. Thus, the BYY harmony
learning can be applied to the log-normal mixtures just as it has
been applied to the Gaussian mixtures.

4.2. On the classification of stock price indexes

For practical usage and test, we apply our proposed adaptive
gradient BYY harmony learning algorithm for log-normal mixtures
to the classification or recognition of stock price indexes and
compare it with the adaptive gradient BYY harmony learning
algorithm for Gaussian mixtures [22], which is considered as
another typical Gaussian mixture modeling algorithm.

According to the general experiences in finance, the closing
price indexes of a stock are probably subject to a log-normal
distribution. Here, we use several stock's closing price indexes
between 2007 and 2009 contained in Dazhihui Software as the
real-world data subjecting to log-normal distributions and com-
bine some of them together to form a dataset for a log-normal
mixture. Fig. 6 shows five such datasets for our classification
application. In each dataset, there are three components and each
component consists of 600 closing price indexes of a stock. The
statistics of each stock indexes in every normalized dataset are
listed in Table 6.

To test the effectiveness of our proposed algorithm, we implement
it on each of the five datasets. According to the converged or estimated
log-normal mixture, we can classify each stock index xt into a com-
ponent or class via its maximum posterior, i.e., arg maxj pðjjxtÞ. In such
a way, the stock indexes in the mixed dataset are classified in
an unsupervised mode. For comparison with the Gaussian mixture
modeling approach, we also implement the adaptive gradient BYY
learning algorithm for Gaussian mixtures on each of these five
datasets and check the classification accuracies of the two algorithms.
In our experiments on each dataset, from each stock indexes we
typically choose 400 items randomly as training data and the other
200 items as testing data. So, together for every mixture, we have a
training set of 1200 indexes and a testing set of 600 indexes.

Specifically, we implement the two algorithms on the training
data of each dataset with k¼6 (note that kn ¼ 3). The initial
parameters are set as discussed previously in Section 3.2. For this
case, the initial mean values are selected via a short RPCL procedure
on the logarithms of the training data. After the accomplishment of
the training process for each algorithm, we obtain the estimated log-
normal mixture and the estimated Gaussian mixture for fitting the
dataset. According to the estimated mixture models over 100 experi-
ments, we get the model selection percentages and classification

accuracies of the two algorithms on the testing data, which are listed
in Tables 7 and 8, respectively.

It can be seen from Tables 7 and 8 that our proposed algorithm
for log-normal mixtures not only makes a better model selection,
but also gets a higher classification accuracy than the adaptive
gradient BYY harmony learning algorithm for Gaussian mixtures
does. These results indeed show that in certain practical usage and
applications, a log-normal mixture modeling method can be more
efficient than a Gaussian mixture modeling method.

5. Conclusions

We have applied the BYYautomated model selection mechanism
to the log-normal mixture modeling by constructing an adaptive
gradient BYY learning algorithm for log-normal mixtures. Moreover,
two simple strategies for deleting an extra component and combin-
ing two similar and close components are suggested to enhance the
convergence efficiency of the algorithm. It is demonstrated by the
experiments on both synthetic and real-world datasets that our
proposed adaptive gradient BYY learning algorithm leads to auto-
mated model selection, i.e., the automated correct selection of
number of actual Log-normal densities, as well as a rather good
estimation of the parameters in the original Log-normal mixture to
generate the dataset, and even outperforms the MML-based unsu-
pervised learning algorithm for log-normal mixtures as well as the
EM algorithm for log-normal mixtures together with the AIC or BIC
criterion on model selection.
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