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a b s t r a c t

Multi-channel microscopy images have been widely used for drug and target discovery in biomedical
studies by investigating morphological changes of individual cells. However, it is still challenging to
segment densely touching individual cells in such images accurately and automatically. Herein, we
propose a geodesic distance based clustering approach to efficiently segmenting densely touching cells
in multi-channel microscopy images. Specifically, an adaptive learning scheme is introduced to
iteratively adjust the clustering centers which can significantly improve the segmentation accuracy of
cell boundaries. Moreover, a novel seed selection procedure based on nuclei segmentation is suggested
to determine the true number of cells in an image. To validate this proposed method, we applied it to
segment the touching Madin-Darby Canine Kidney (MDCK) epithelial cells in multi-channel images for
measuring the distinct N-Ras protein expression patterns inside individual cells. The experimental
results demonstrated its advantages on accurately segmenting massive touching cells, as well as the
robustness to the low signal-to-noise ratio and varying intensity contrasts in multi-channel microscopy
images. Moreover, the quantitative comparison showed its superiority over the typical existing cell
segmentation methods.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

High content screening (HCS) has been widely used for dis-
covering novel drugs and targets by investigating the morphological
changes of interested proteins inside individual cells [1–3]. Along
with the advance of automated image acquisition equipments, large
scale of cell images with multiple fluorescent markers is being
generated in experiments. Whereas, great challenges have been
posed on the automated quantification of individual cell morphol-
ogy due to their complex appearances, uneven intensity, low signal-
to-noise ratio (SNR), and cell touching [4–7]. Automated detection
and accurate segmentation of touching cells are crucial for biologi-
cal studies such as cell morphological analysis, cell tracking and cell
phase identification [8–10]. However, it remains being an open
problem due to the aforementioned challenges.

A series of approaches of automated cell segmentation in
different kinds of images have been reported [11,12]. In general,
the widely used segmentation approaches, for example, watershed
method [9,13] and deformable models like the snake model and
level set methods [14,15], are sensitive to initializations (e.g., seeds
selection), and intensity variation inside cells. Specifically, the
watershed method is often involved in the over-segmentation
problem, and also sensitive to the intensity noise. Active contour
or level set based deformable models are very sensitive to
boundary initializations. In addition, the computational cost is
heavy for these methods. Therefore, they are unsuitable for
processing a large scale image dataset in high content screening
studies. Clustering methods and statistical approaches have also
been employed for cell segmentation [16–18]. These methods are
efficient but usually provide incomplete segmentations because
they operate on the single pixel level and neglect the fact that cells
are continuous regions. Especially, these methods have limited
ability in delineating boundaries of touching cells in cell mem-
brane segmentation. Moreover, large intensity variation on cell
membrane and inside cells has made it a much more challenging
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problem to find the dividing boundaries of cells, which usually
lead to biased segmentation results.

In order to segment touching cells more accurately, several new
techniques have been investigated in recent years, including
certain adaptive learning approaches to separating overlapped
nuclei or cells. In fact, Jung et al. [19] utilized an unsupervised
Bayesian classification scheme based on parametric EM algorithm
for separating overlapped nuclei. Moreover, the single-path voting
followed by a mean-shift clustering process was employed to
locate the cell centers by Qi et al. [20]. Furthermore, the graph-
cuts-based algorithm was successfully applied by Yousef et al. [21]
to develop a nuclei segmentation method as well as a powerful
toolkit software named ”FARSIGHT”. On the other hand, some
classical conventional methods have also been carried forward,
such as the adaptive thresholding watershed algorithm [9] and the
adaptive active physical deformable model [22]. To solve the cell
segmentation problem more effectively via the advanced mathe-
matical model, Jones et al. [23] proposed a new distance metric
defined on image manifolds which combined image gradients and
inter-pixel distance together. This metric demonstrated its effec-
tiveness, but the segmentation results strongly depended on the
initial selection of seeds. Although the centers of nuclei could be
adopted as the seeds in CellProfiler [24], the segmentation results
became worse as cell nuclei are touched together. Besides, Cell-
Profiler accomplished the pixel clustering after only one time of
assignment, the boundaries were obtained without optimization.
Along the direction of new distance metric, we recently proposed
a novel clustering method with the geodesic distance for gray
scale images in [25] with little a priori knowledge. Although it is
robust to the initialization of seeds, the determination of number
of clusters is still a bottleneck in improving the segmentation
performance further. Over-segmentation occurs when the number
of initial seeds is more than the true number of cells in an image,
which is a well known inherent disadvantage of K-means cluster-
ing methods.

Aiming for accurate segmentation of the touching Madin-Darby
Canine Kidney (MDCK) epithelial cells in multi-channel (color)
images, in this paper, we propose a nuclei segmentation based
K-means clustering method using the geodesic distance. The main
contribution of this paper is that an adaptive learning scheme is
established to adjust the clustering centers with the geodesic
distance for improving the segmentation accuracy. Technically,
color information is taken into consideration to select the number
of reasonable initial seeds for clusters through a well-designed
nuclei segmentation procedure. As a result, the over-segmentation
problem is effectively overcome, more accurate dividing bound-
aries are delineated, and the convergence of the improved
K-means clustering method is also speeded up.

The rest of this paper is organized as follows. We briefly
introduce the geodesic distance based clustering method in
Section 2. Section 3 presents the details of our adaptive cell
segmentation procedure. The experimental results on MDCK
images are demonstrated in Section 4. Finally, a brief conclusion
is provided in Section 5.

2. Geodesic distance based clustering method

2.1. Riemannian metric

We firstly introduce the assumed Riemannian metric defined at
each pixel in an image I [23]. Specifically, Gð�Þ is defined as

Gð�Þ ¼∇gð�Þ∇gT ð�ÞþλE
1þλ

; ð1Þ

where E is the 2�2 identity matrix, λZ0 is a regularization
parameter and ∇ is a gradient operator. The function g is
introduced to reduce the effect of noise by weighted averaging
the pixels within a certain neighborhood. The infinitesimal dis-
tance at each pixel is then calculated by

JdxJ2Gð�Þ � dxTGð�Þ dx¼ ðdxT∇gð�ÞÞ2þλ dxT dx
1þλ

: ð2Þ

The item ðdxT∇gð�ÞÞ2 increases greatly along the direction of the
largest gradient in the image and captures the boundary informa-
tion essentially. The operator Gð�Þ becomes Euclidean as λ increases
to infinity, while λ¼ 0, the operator considers only gradient
information. More details can be found in [23].

2.2. Clustering scheme

Under the assumed Riemannian metric, the geodesic distance
from any pixel to another can be calculated along the shortest path
using Dijkstra's algorithm [23]. In general, the distance calculation
propagates from a smaller neighborhood of the starting pixel to a
larger one, and finally reaches the object pixel.

Based on the geodesic distance introduced above, we propose
an improved version of K-means clustering algorithm to delineate
cell boundaries. It can be summarized as the following four main
steps:

1. Select initial seeds.
2. Compute pixels' geodesic distances to each seed according to

the Riemannian metric and assign each pixel to the cell with
the nearest geodesic distance.

3. Update each seed to the center of its current enclosing cell.
4. Repeat step 2 and step 3 until the algorithm has converged or

the maximum number of iterations is reached.

The clustering centers will gradually converge to cells' spatial
centers after a small number of iterations as long as each cell has
one initial seed in it. Thus, the algorithm is robust to the initial
seeds selection. The inherent characteristics of the Riemannian
metric ensure that the algorithm can accurately delineate touching
cell boundaries in images with high noise, poor contrast, and large
intensity variations. After the algorithm has converged, cell
boundaries are easy to draw according to the final clustering
result.

3. Cell segmentation procedure

In the implementation of the improved clustering method for
cell segmentation, it is important to determine the number of
clusters and to set the initial seeds of the clusters. Clearly, the
number of clusters should correspond to that of cells in the image
and it is reasonable and efficient to set the initial seeds as the
centers of the nuclei. In order to solve these problems, we can
execute a nuclei segmentation procedure independently. In fact,
accurate segmentation of the nuclei regions is usually a very
important prerequisite of many cell segmentation methods to
get some critical parameters, and even nuclei segmentation itself
has become an independent research direction. Here, we need to
determine the number of cells in an image as well as their
locations. At this stage, it is not necessary to delineate the accurate
boundaries of nuclei fields. However, a fixed global thresholding
scheme seems to be unsatisfactory because of the inhomogeneity
of intensity distribution. In fact, a lower thresholding scheme
would fail in segmenting touching nuclei fields, while a higher one
erases nuclei regions with low intensity.
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To overcome this difficulty, we utilize a simple adaptive nuclei
segmentation procedure based on the mathematical morphology
and a priori knowledge. Actually, we can easily distinguish nuclei
fields in an color cell image because nucleoli and nuclear hetero-
chromatin are stained clearly with basic dyes. So the blue channels
representing the nuclei fields in our MDCK epithelial cell images
can be extracted and used as input images. We firstly select the
pixels around the boundary lines by their statistical characteristic
of local intensity variation, and break the touching nuclei fields by
setting the gray value of these pixels to 0. Then, an adaptive local
thresholding scheme can be implemented to get the binary image.
With the help of a morphological method, we can get the final
binary image where all the nuclei are separated from each other
and thus take the centroids of the white connected regions as the
initial clustering centers for our proposed clustering method.
Specifically, we present the nuclei segmentation procedure in
the following three subsections.

3.1. Boundary pixel selection

We begin to consider an input image as a topographic surface
where the gray value of each pixel in the blue channel is regarded
as its altitude. Then, the mountain peaks are composed of nuclei
pixels, while the boundary pixels make up the valleys, as illu-
strated in Fig. 1. For any pixel p, let i be its row number and j be its
column number in the image, we compare its gray value with
those of its 5�5 neighborhood pixels, count the number of pixels
which have greater gray values than that of p, and denote it by Ng.
On the other hand, we also count the number of pixels with the
gray values less than that of p and denote it by Ns. We determine
the approximate location of p by calculating Lp as follows:

Lp ¼Ng�Ns ¼ ∑
iþ2

s ¼ i�2
∑
jþ2

t ¼ j�2
sgnðgs;t�gi;jÞ ð3Þ

where sgnð�Þ is the sign function, gs;t is the gray value of the
neighbor pixel with line number s and row number t, gi;j is the
gray value of p. If p is a pixel in a valley, the most neighborhood
pixels around it may have a greater gray value than that of p so
that Ng will be much greater than Ns, for instance, Lp43, we thus
consider p as a boundary pixel. Otherwise, if p is on mountain
slope, Ng and Ns would be almost the same, it can hardly be around
the boundary lines. A calculation instance is illustrated in Table 1.

Fig. 2(a) shows a binary image derived from a blue channel
image by using its mean gray value as the global threshold, while
Fig. 2(b) demonstrates the boundary pixels we extract from the
original blue channel image. For the convenience of further
processing, we break the touching nuclei fields by setting the gray

value of these selected pixels to 0. The benefits of doing this will
be exhibited in the next subsection.

3.2. Adaptive local thresholding operation

We further adopt an adaptive local thresholding operation after
breaking the touching nuclei fields to get a binary image in which
white area represents nuclei fields. The threshold is ascertained by
combining the global mean gray value Mg and the local mean
value Ml, where Mg is defined as the average over all pixels in an
image, while Ml is defined as the average over a predefined
neighborhood of a pixel, p. If the gray value of p, denoted by gp,
satisfies gp41:2 �Mg or gp4maxf0:6 �Mg ;2 �Mlg, we set the
corresponding pixel of the binary image to 1; otherwise, we set
it to 0. Mathematically, the thresholding function can be given as
follows:

f ðpÞ ¼ 1 if gp41:2 �Mg or gp4maxf0:6 �Mg ;2 �Mlg;
0 else:

�
ð4Þ

The reason of the constraint gp40:6 �Mg is for suppressing the
false positive points in poor intensity area caused by random
fluctuation. For example, if gP ¼ 5; Ml ¼ 2 and Mg ¼ 24, f(p) would
be 1 without this constraint. All these parameters can be selected
by experience, and will not be changed in the whole processing
procedure for all the images. Fig. 2(c) illustrates a binary nuclei
image after the adaptive local thresholding operation on the
broken touching nuclei fields. In comparison with Fig. 2(a), we
find the fact that the boundaries of adjacent nuclei fields are very
fragile after our breaking operation, which thereby reminds us to
utilize the mathematical morphologic opening. In mathematical
morphology, opening is the dilation of the erosion of an image by a
structuring element. So the broken boundaries can easily be split
through an morphologic opening [26]. Fig. 2(d) shows the result of
the morphologic opening.

3.3. Seed selection scheme

With the above preparations, we can present the seed selection
scheme. It may be easy to set the initial seeds as the centers of
these separated white areas corresponding to the nuclei fields, but
there may emerge a new problem from our previous operations
that an actual nuclei area might be broken up into some separate
parts. So, we must merge them together, otherwise, the number of
initial seeds will be greater than the number of cells in the image.
In fact, a very simple merging method can solve this problem. We
compute the geometrical center of each connected region and
merge the centers that are close enough. The final centers of
regions provide the selected seeds, which certainly lead to the
number of cells in the image as well as their locations. Although
there have been already many adaptive model selection clustering
methods (e.g., [27–30]) that can determine the number of clusters
automatically from the dataset, they are time-consuming and
often lead to a wrong result when the actual clusters are over-
lapped or touched. Here, we implement the geodesic distance
based K-means clustering method with this seed selection scheme
on massive images of different types. The selection results on four
specific images with very different characteristics are illustrated in
Fig. 3.

In summary, we establish a geodesic distance based K-means
clustering method for segmenting densely touching cells in a
multi-channel microscopy image. Moreover, an efficient nuclei
segmentation procedure using the color information of the image
is suggested to select the number of reasonable initial seeds for
clusters or cells.

Fig. 1. The topographic surface of a cell image where the gray value of each pixel in
the blue channel is regarded as its altitude. (For interpretation of the references to
color in this figure caption, the reader is referred to the web version of this paper.)
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4. Experimental results

We implemented the proposed geodesic distance based
K-means clustering method on the MDCK epithelial cell images
from dog kidney that were used to study the effects of drug
compounds on regulating Ras protein levels, which were deter-
mined by measuring the fluorescence intensity of a GFP-tagged
N-Ras reporter. Thus, the accurate segmentation of cells is crucial
for measuring the GFP-tagged Ras signal changes between the
control and drug-treated cells. But the obtained cell images have
high noise, varying densities and complex morphologies, as illu-
strated in Fig. 3.

The images were firstly down-sampled to 256�256 from
512�512. Function g in the distance definition was taken as the
Gaussian low pass filter in 3�3 neighborhood and λ was set to
2.4 in our experiments. In our seed selection procedure, we
calculated Ml over a 15�15 neighborhood of each pixel. A flat
diamond-shaped structuring element with a radius of 3 pixels was
used in the morphologic opening operation. Some of the typical
segmentation results of our proposed method on four representa-
tive MDCK images with very different characteristics are illu-
strated in Figs. 4 and 5, being compared with the segmentation
results of the manual drawing by expert, our previous method
[25], CellProfiler [24] and the adaptive thresholding watershed
algorithm [9].

It can be found from Figs. 4 and 5 that the segmentation results
of our proposed method is very similar to those of the manual
drawing by expert and much better than those of the other
methods. Clearly, CellProfiler led to certain “narrow band” segmen-
tation error, while the previous method fell into over-segmented

problem. Moreover, the watershed method could not detect the
correct boundaries of the cells.

We further try to evaluate and compare those cell segmenta-
tion results quantificationally. Since there is neither universal
evaluation method nor standard database in this respect so far,
we use three reasonable evaluation indexes together to evaluate
the cell segmentation results more precisely. A widely used
quantitative evaluation method is to compare the results with
manual segmentations quantificationally on different aspects.
Actually, we can consider the accuracy of cell number, the average
ratio of overlapped areas of cells as well as the average excursion
of boundary pixels of cells, which can be defined and calculated as
follows.

The accuracy of cell number, denoted by Rn, can be defined and
calculated by

Rn ¼ 1�jNa�Nmj
Nm

ð5Þ

where Na is the cell number obtained by our proposed clustering
segmentation method, while Nm is that of the manual segmenta-
tion. As for the average ratio of overlapped areas of cells in the
manual and clustering segmentation images, we can compute it as
follows. For each segmented cell Pmi in the manual segmented
image, we calculate its geometric center ðCix;CiyÞ by taking an
average on all the row coordinates and column coordinates of
pixels in Pmi, respectively. Then, we can find the corresponding
segmented cell Pai which encloses ðCix;CiyÞ in the clustering
segmented image, calculate the overlapped area between Pmi and
Pai, and get the overlapping ratio by dividing it by the area of Pmi.
Averaging on all possible Pmi in the manual segmented image,

Table 1
(a) A typical pixel around boundary line with gray value “4”; (b) The gray value comparison matrix of its 5�5 neighborhood pixels.
Here, “�1” means that the gray value is less than that of the central pixel, while “1” means “greater” and “0” means “equal to”. The
deviation Ng�Ns ¼ 15 can be calculated by summing over all the elements in the comparison matrix.

(a)

24 23 21 21 21
11 10 8 10 3
4 1 4 2 13
3 5 9 13 15

10 11 13 14 15

(b)

1 1 1 1 1
1 1 1 1 �1
0 �1 0 �1 1

�1 1 1 1 1
1 1 1 1 1

Fig. 2. (a) A binary image derived from a blue channel image by using its mean gray value as the global threshold; (b) The boundary pixels that satisfy the selection
condition; (c) A binary nuclei image after having wiped the boundary pixels out and implemented the adaptive local thresholding operation; (d) The final segmented nuclei
image after the morphological open operation.
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we finally get the average ratio as follows:

Rs ¼
1
Nm

∑
Nm

i ¼ 1

SðPmi \ PaiÞ
SðPmiÞ

; ð6Þ

where S(A) denotes the area of a field A.
We now turn to the average excursion of boundary pixels of

cells. The offset of boundary pixels is the distance between the
automatic segmentation results and the manual segmentation
results in the orthogonal or normal direction of local boundary
[23]. We consider a statistic of the offset as follows:

Pb;k ¼
∑k

i ¼ 0Nbi

Nb
; ð7Þ

where Pb;k represents the proportion of boundaries pixels with an
offset no more than a predefined positive integer k (along the
normal direction), while Nbi is the number of boundary pixels with
an offset of i, Nb is the total number of boundary pixels delineated
by the manual segmentation. Since Pb;k can benefit from over-
segmentation and result in a ridiculous result, we construct
another statistic, Rb;k, by amending Pb;k with a regularization term,
which can be formulated by

Rb;k ¼ δ � Pb;kþð1�δÞ � 1
1þMk

; ð8Þ

where Mk is the average number of boundary pixels in an l� l
neighborhood of each cell center with l¼ ½k=2�, where ½x� denotes
the largest integer less than x, δ is a regularization parameter
satisfies 0rδr1. Since Mk is a meaningful measure of dispersion
of the boundary pixels away from their centers, the second term of
Eq. (8) is a penalty term for the over-segmentation phenomenon

because over-segmentation introduces redundant boundaries such
that there are more boundary pixels being close to a cell center.
So, by combining the two terms together, Rb;k gives a more
reasonable index to evaluate the segmentation result of the cell
image. A feasible selection of parameter δ is δk ¼ 1=ð1þkÞ. In this
way, the accuracy of boundaries and credibility of Pb;k decreases as
k increases, while the excursion degree of boundaries away from
cell centers becomes more important. Clearly, this index is reason-
able only when k is less than the average cell diameter.

By comprehensive analysis, we can find that these three indices
are reasonable and valuable for evaluating the cell segmentation
results on an MCDK or general image assuming that the manual
segmentation results by expert are correct and reliable. In general,
an expert can draw the correct cell segmentation results as we
expect. However, in certain cases, it is very difficult even for an
expert to distinguish whether there is a cell or not in some blurred
area. So, the reliability of the manual cell segmentation is still
questionable, but we neglect this problem here. On the other hand,
these three indices evaluate the cell segmentation results on
different aspects and none of them is so perfect. Rn just focuses
on cell number, while Rs cares about only the overlapped areas
between the clustered and manual segmented cells. As for Rb;k, the
reasonable selection of δ is controvertible and needs to be further
investigated. For more reasonable and effective evaluation on the
cell segmentation results, we use all the three indices together in
the following analysis and comparison.

Most of our MDCK images are quite similar to Fig. 3(a) and (b).
In fact, our proposed method has a very good and consistent
performance on these two kinds of MDCK images. To make the
validation more convincing, we implemented the proposed

Fig. 3. The seeds (white points in black and white or red points in color) selection results in four typical MDCK images with distinct characteristics: (a) strong RAS signal
(white rings in black and white or green rings in color); (b) uneven RAS signal; (c) low RAS signal; and (d) noise and varying RAS signal. (For interpretation of the references
to color in this figure caption, the reader is referred to the web version of this paper.)
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method to the four kinds of MDCK images shown in Fig. 3, denoted
by (a)–(d). The accuracy of cell number for each of the four images
is illustrated in Table 2, and Table 3 shows the average ratios of
overlapped areas of cells for the four images in comparison with
our previous method. We do not provide the corresponding
indexes of Rn and Rs for K-means and CellProfiler here because
finely divided segmentations and fragmentary boundaries make
them meaningless.

It can be found from Table 2 that the segmentation result of our
proposed method is quite good in images (a)–(c), but not very
good in image (d). Actually, in image (d), apart from its high noise

and blur, there are also many blue nuclei fields which are not
surrounded by cell plasma, and manual segmentation excludes
them from independent cells. According to the average ratios of
overlapped areas of cells given in Table 3, it can be further found
that even for images (c) and (d), our proposed algorithm can get a
near or over 80% average ratio on overlapped areas of cells.
Moreover, it performs much better than our previous method.
Obviously, it is just the over-segmentation behaviour that makes
our previous method to not perform so good.

Fig. 6 illustrates the sketches of the average excursions of
boundary pixels of cells within 7 pixels of offset by taking an

Fig. 4. The segmentation results of the proposed method (the left column), the manual drawing by expert (the middle column) and our previous method (the right column)
on four representative images.
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Fig. 5. The segmentation results of the proposed method (the left column), CellProfiler (the middle column) and the watershed algorithm (the right column) on four
representative images.

Table 2
The accuracies of cell number for the four representative images.

Image Nm Na Rn

(a) 86 80 0.93
(b) 120 112 0.93
(c) 93 100 0.92
(d) 55 66 0.80

Table 3
The average ratios of overlapped areas of cells for the four representative images in
comparison with our previous clustering method in [25].

Image Nm Previous method New method

(a) 86 0.7832 0.8842
(b) 120 0.8560 0.8797
(c) 93 0.7120 0.7813
(d) 55 0.6272 0.8467
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average over 20 typical images in MDCK database for our proposed
new method, our previous method, conventional K-means algo-
rithm, and CellProfiler. Since the watershed algorithm did not
perform well on cell segmentation of MDCK images, we do not
consider it in this case. It can be clearly observed that our
proposed method performs better than the other three methods.
In fact, it can be observed from Fig. 4 that CellProfiler generated a
lot of false boundaries and our previous method delineated some
accurate boundaries but over-segmented. Actually, the (conven-
tional) K-means algorithm led to many debris and fluctuated
boundaries. Thus, this index confirms the advantages of our
proposed method on accurate segmentation of cells.

Based on the comparison results on all the three indexes, we
are confident that our proposed method can segment cells
accurately and outperforms the other existing methods.

To sum up, our proposed method is a promising cell segmenta-
tion method. It inherits the advantages of our previous method
such that it can delineate continuous and unique boundaries of
cells even on images with low contrast, high noise, high intensity
variation and varying cell density. Besides, it overcomes the over-
segmentation problem and greatly improves the accuracy of cell
number, and speeds up the convergence since the initial seeds
have been already located properly and reasonable via a nuclei
segmentation procedure. That is, our proposed method has been
considerably improved to get such better segmentation results by
utilizing more prior information including the color information.

5. Conclusion

We have proposed a geodesic distance based K-means cluster-
ing method that can well segment touching Madin-Darby Canine
Kidney (MDCK) epithelial cells for discovering novel drugs reg-
ulating the spatial patterns of the N-Ras protein inside individual
cells in multi-channel microscopy images. Actually, an adaptive
learning scheme is introduced to adjust the clustering centers
iteratively and efficiently. Moreover, a novel nuclei segmentation
procedure is established to determine the number of reasonable
initial seeds for the clusters in the K-means paradigm. Experi-
mental results demonstrate that our proposed method is effective
and efficient in delineating continuous touching boundaries
between massive cells and robust to the low signal-to-noise ratio,
varying intensity contrasts and high cell densities in microscopy
images. In comparison with the common cell segmentation tool
CellProfiler and the conventional K-means clustering method, our
proposed method can generate more accurate and smooth cell

boundaries between touching cells, even for very low contrast and
high noise images. As compared with our previous clustering
method, this new clustering method ascertains the number of cells
in an image by utilizing the color information and thus overcome
the over-segmentation problem.
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