
Neurocomputing 62 (2004) 19–37
www.elsevier.com/locate/neucom

The capacity of time-delay recurrent neural
network for storing spatio-temporal sequences�

Jinwen Ma∗
Department of Information Science, School of Mathematical Sciences and LMAM, Peking University,

Beijing, 100871, China

Received 20 July 2001; received in revised form 23 November 2003; accepted 24 November 2003

Abstract

We investigate the capacity of a type of discrete-time recurrent neural network, called time-
delay recurrent neural network, for storing spatio-temporal sequences. By introducing the order
of a spatio-temporal sequence, the match law between a time-delay recurrent neural network and
a spatio-temporal sequence has been established. It has been proved that the full order time-delay
recurrent neural network of l-step feedback is able to learn and memorize (or store) any bipolar
(or binary) spatio-temporal sequence of the order k if k6 l, and that the asymptotic memory
capacity of the 1rst-order time-delay recurrent neural network of one-step feedback is not less
than C1(n) = n+1, where n is the number of processing neurons in the network. Moreover, we
substantiate the theoretical results by simulation experiments.
c© 2003 Elsevier B.V. All rights reserved.

Keywords: Recurrent neural network; Time-delay system; Spatio-temporal sequence; Memory capacity;
Feedback

1. Introduction

In temporal information processing, it is often necessary to store and recognize
spatio-temporal sequences which are fundamentally di:erent from static patterns. Ac-
tually, many approaches have been made to build a temporal system which can learn
and memorize (or store) spatio-temporal sequences e:ectively. Recent developments

� This work was supported by Natural Science Foundation of China (19701022,60071004) and the Natural
Science Foundation of Guangdong Province (970377).

∗ Corresponding author. Department of Information Science, School of Mathematical Sciences, Peking
University, Beijing, 100871, China.

E-mail address: jwma@math.pku.edu.cn (J. Ma).

0925-2312/$ - see front matter c© 2003 Elsevier B.V. All rights reserved.
doi:10.1016/j.neucom.2003.11.010

mailto:jwma@math.pku.edu.cn

20 J. Ma /Neurocomputing 62 (2004) 19–37

in the 1eld of neural networks have brought out certain good temporal models and
methods to meet this demand. One major method is to incorporate feedback into static
or mapping neural networks, making them recurrent. This leads to the so-called re-
current neural network [13]. In fact, the recurrent neural network contains many types
of neural network, such as Hop1eld network [2] as well as its generalized version
[4], simplex memory neural network [5], continuous-time recurrent neural network [8]
and discrete-time or real-time recurrent neural network [10,15]. Moreover, the recurrent
neural network has been widely applied to temporal information processing, such as
speech recognition, prediction, and system identi1cation and control (e.g., [7,9–11,14]).
However, little progress has been made on theoretical study of the capacity of the

recurrent neural network to learn and memorize spatio-temporal sequences. In literature,
we can only 1nd a theoretic result given by Amari [1] that the memory capacity of
the so-called autoassociative memory model with the sum-of-outer product scheme
on a simple spatio-temporal sequence, is about 0:27n, where n is the number of the
processing neurons. Actually, the autoassociative memory model is just a special form
of discrete-time recurrent neural network such that it consists of n fully connected
binary or bipolar neurons, with its output being the vector of states of n neurons
evolving from an initial pattern as the only input signal. Certainly, this model can be
generalized and improved considerably if multi-step time-delay feedback of the output
is allowed to take part in the computation of the neurons to learn and memorize
spatio-temporal sequences. We will refer to such an extension of the autoassociative
memory model as time-delay recurrent neural network or TDRNN for short. In the
present paper, we will investigate the capacity of time-delay recurrent neural network
for storing spatio-temporal sequences.
In sequel, we give a brief description of a TDRNN and establish a match law be-

tween a TDRNN and a spatio-temporal sequence in Section 2. We then analyze the
capacity of the high-ordered TDRNN for learning and memorizing a bipolar (or binary)
spatio-temporal sequence in Section 3. We further analyze the asymptotic memory ca-
pacity of the 1rst-order TDRNN of one-step feedback, i.e., the autoassociative memory
model, under the perceptron learning algorithm in Section 4. In Section 5, simulation
experiments are conducted to substantiate our theoretical results. Finally, we conclude
in Section 6.

2. The TDRNN and a match law

We begin with a brief description of a TDRNN of l-step (time-delay) feedback. As
shown in Fig. 1, it consists of n processing neurons which form the single processing
or output layer. The state of processing neuron i at time t is denoted by xi(t) which
is generally a real number. Then, the state vector of the TDRNN at time t is denoted
by X (t) = [x1(t); x2(t); : : : ; xn(t)]T. Additionally, there is an input layer with an n × l
array of input neurons. We let Ii; j denote the input neuron at the ith row and the jth
column. There is a connection from Ii; j to Ii; j+1 and all the neurons in each row from
the left to the right, form an l-step shift register. The ith processing neuron in the
output layer is connected to Ii;1 such that the output of the ith processing neuron can

J. Ma /Neurocomputing 62 (2004) 19–37 21

21 l columnl-1

Output
layer

O

I

I

O

I

I

I

11

21

n1

1

2

Input layer

O

1l

2l

nl

n

I

Fig. 1. The structure sketch of the time-delay recurrent neural network (TDRNN) with l-step delay feedback.

be fed back to Ii;1. All the input neurons are connected to each processing neuron in
the output layer.
The TDRNN operates in the following way. It starts with a set of initial states (i.e.,

bipolar patterns) X (0); X (1); : : : ; X (l − 1). We assume that the state of the array of
input neurons at the time t is [X (t); X (t − 1); : : : ; X (t − l + 1)]. Then, the output of
the TDRNN at the next time, i.e., X (t + 1) = [x1(t + 1); x2(t + 1); : : : ; xn(t + 1)]T, is
computed by

xi(t + 1) = Fi(X (t); X (t − 1); : : : ; X (t − l+ 1)) (1)

for i = 1; 2; : : : ; n, where Fi is the activation function of the ith processing neuron
with the parameters of the weights on the connections from the input neurons to and
the threshold value of it. In the meantime, each xi(t + 1) is directly fed back to Ii;1
and becomes the state of Ii;1. And for each k (=0; 1; : : : ; l − 2), xi(t − k + 1) as
the state of Ii; k+1 at the time t, is now shifted to Ii; k+2 and becomes the state of
Ii; k+2. In such a way, the TDRNN can produce a spatio-temporal sequence of the
states as X (0); X (1); : : : ; X (t); X (t + 1); : : :, recursively. Therefore, it can learn and
memorize a spatio-temporal sequence if its parameters, i.e., the weights and thresh-
old values in the network, can be learned appropriately via certain learning
algorithm.
In order to analyze the capacity of the TDRNN for the storage of spatio-temporal

sequences, we 1rst introduce the order of a spatio-temporal sequence. For clarity, a
spatio-temporal sequence S is de1ned as

S= P1P2 · · ·Pm;

where m is a positive integer or in1nity, and Pi = [pi;1; pi;2; : : : ; pi;n]T ∈Rn for i =
1; : : : ; m. If pi;j ∈ {−1; 1}({0; 1}), S is called a bipolar (binary) spatio-temporal

22 J. Ma /Neurocomputing 62 (2004) 19–37

(a) (b) (c)
P1

P2

P3

P4

P5

P9

P5(P8)

P1(P4)

P6

P7

P2

P3

P1

P2(P5)

P3(P6)

P4

P7

Fig. 2. The structure sketches of the 3 two-dimensional real spatio-temporal sequences with di:erent or-
ders, where each black dot represents a spatial pattern Pi of the spatio-temporal sequence in the plane
and the arrows make them temporal. (a) The order of the spatio-temporal sequence is 1, that is, it is a
simple spatio-temporal sequence; (b) the order of the spatio-temporal sequence is 2; (c) the order of the
spatio-temporal sequence is 3.

sequence. Usually, m is called the length of the spatio-temporal pattern and these Pi

are called spatial patterns. When S is periodic, i.e., Pi is periodic with i, it is further
called a spatio-temporal cycle. But here, for clarity, we only consider non-periodic
spatio-temporal sequences with the 1nite length, i.e., m is 1nite, and the order of such
a spatio-temporal sequence can be de1ned as follows.

De�nition 1. The order of a spatio-temporal sequence S= P1P2 · · ·Pm is de1ned by

r(S) =min{k :PiPi+1 · · ·Pi+k−1 �= PjPj+1 · · ·Pj+k−1

for all i; j6m − k; and i �= j}: (2)

That is, the order of S is the minimum of the number k which enables all the
possible k-step blocks of S except the last one Pm−k+1 · · ·Pm, to be di:erent. When
the order of S is just one, we usually call it a simple spatio-temporal sequence. In this
case, all the patterns of S except Pm are di:erent. Fig. 2 gives the structure sketches
of three spatio-temporal sequences whose orders are 1, 2 and 3, respectively.
By De1nition 1, if the order of S is k and m¿k, all the possible k-step blocks of

S except Pm−k+1 · · ·Pm are di:erent. So, we can de1ne a function: F(Pi−k+1; : : : ; Pi)=
Pi+1 for i = k; k + 1; : : : ; m − k − 1. Then, the TDRNN can learn and memorize this
spatio-temporal sequence by realizing this function. Then we have

Theorem 1. Suppose that a spatio-temporal sequence S is given and its order is k,
and that N is a TDRNN of l-step feedback. If N is used to memorize S via any
learning algorithm, it is necessary that l¿ k.

J. Ma /Neurocomputing 62 (2004) 19–37 23

Proof. By the function of a TDRNN, N can only produce a spatio-temporal sequence
with its order equal to or less than l, from any set of initial patterns. Thus via any
learning algorithm, N is only possible to memorize a spatio-temporal sequence whose
order is equal to or less than l. Therefore, the condition l¿ k is necessary. The proof
is completed.

Essentially, Theorem 1 gives a match law between a TDRNN and a spatio-temporal
sequence. That is, if the order of a spatio-temporal sequence is equal to or less than the
number of steps of time-delay feedback in a TDRNN, it is possible for the TDRNN
to learn and memorize this spatio-temporal sequence. Otherwise, the TDRNN cannot
learn and memorize this spatio-temporal sequence by any learning algorithm. It is also
clear that the condition l¿ k is not suJcient for memorizing any S by the TDRNN
via a general learning algorithm. However, we will prove that this condition is really
suJcient in certain case in the next section. For simplicity, we will only analyze the
memory capacity of the TDRNN on learning and memorizing bipolar spatio-temporal
sequences in the remainder of this paper. It is certain that the length of a non-periodic
bipolar spatio-temporal sequence S, i.e., m, is certainly 1nite if its order is 1nite.
When spatio-temporal sequences become binary, the following analysis is still true if
the states of the processing neurons become binary.

3. The higher order TDRNNs

We begin with the order of a TDRNN. For the storage of bipolar spatio-temporal
sequences, we use perceptrons as the processing neurons in the network. Then, the input
pattern for each of these perceptrons is just the state of the array of input neurons.
Mathematically, a perceptron becomes of higher order if some higher order terms of
the components of the input pattern are involved in the computation. It is natural to
de1ne the order of a TDRNN as the order of these perceptrons, i.e., the processing
neurons of the TDRNN. For the sake of clarity, we de1ne the higher order perceptron
and its generalized perceptron learning algorithm as follows.
As well-known, a perceptron is a processing unit with a d-dimensional input pattern

X = [x1; x2; : : : ; xd]T ∈Rd and a bipolar output y∈ {−1; 1} via a weight vector W =
[w1; w2; : : : ; wd]T and a threshold value � such that for an input pattern X , the output
y is computed by

y(X) = T (X |W; �) = Sgn(H (X)) =

{
1 if H (X)¿ 0;

−1 otherwise;
(3)

where

H (X) =
d∑

i=1

wixi − �:

We consider bipolar input patterns and assume that A;B are two disjoint subsets of a
sample set in {−1; 1}d. Then, (A;B) becomes a learning object of the perceptron, that

24 J. Ma /Neurocomputing 62 (2004) 19–37

is, the perceptron is expected to implement the following relationship:

T (X |W; �) =

{
1 if X ∈A;

−1 if X ∈B:
(4)

Clearly, if A and B are linearly separable in the d-dimensional Euclidean space, the
learning object (A;B) can be realized by a perceptron via the perceptron learning
algorithm [12] on the sample set A ∪ B, i.e., W and � are modi1ed by the following
learning rule:

KW = �(d(X) − y(X))X;

K�= �(d(X) − y(X));

where � is the learning rate and is usually selected to be a positive constant about 0.1,
d(X) and y(X) are, respectively, the expected (or object) and actual output values of
the perceptron at each input vector X ∈A ∪ B.
As the input component variables are linear in the sum of H (X), this perceptron is

also called the 1rst-order perceptron. For the de1nition of the higher order perceptron,
we introduce the following notation:

F
p
d = {C :C ⊂ {1; 2; : : : ; d}; |C|6p}

where 16p6d, |C| is the number of elements of C. For the empty set �, we let
|�| = 0. We further let

Np
d = |Fp

d | = 1 + C1
d + · · · + Cp

d ;

where Ci
d is the combinatorial number. That is, Np

d denotes the number of the subsets of
{1; 2; : : : ; d} whose element numbers are no more than p. Therefore, Nd

d =2d. With the
above preparations, the pth order perceptron can be de1ned by the activation function
as follows:

T (Wp(d); X) = Sgn

 ∑

 ∈F
p
d

w(d;)U (X;)

 ; (5)

where

Wp(d) = {w(d;) : ∈F
p
d}

is called the pth order spread weight vector, and

U (X;) =
∏
i∈

xi; if �= �;

U (X;�) = 1:

As an illustration, the architecture of the second-order perceptron with three in-
put variables is sketched in Fig. 3. There are 6 weights and a threshold value for
it. The three weights w(3; {1}); w(3; {2}); w(3; {3}) are corresponding to the three

J. Ma /Neurocomputing 62 (2004) 19–37 25

x 1x 3

x 2x 3

x 1x 2

x 1

x 2

x 3

w(2, Φ)
w(2, {1})

w(2, {1, 2})

w(2, {2})

w(2, {1, 3})

w(2, {2, 3})

w(2, {3})

y = T (W 2(3), X)

Fig. 3. The structure sketch of the second-order perceptron.

input variables x1; x2; x3, respectively, while the other three weight vectors w(3; {1; 2}),
w(3; {1; 3}), w(3; {2; 3}) are corresponding to the three second terms of the input vari-
ables, i.e., x1x2; x1x3; x2x3, respectively. w(3; �) is the threshold value of the perceptron.
According to Eq. (5), the pth order perceptron has Np

d weights (including w(d;�)
as the threshold value). Certainly, it can be still considered as a special 1rst-order
perceptron with a weight vector in the Np

d -dimensional Euclidean space (including the
threshold value as a component). Then, if we use the spread form of X , i.e.,

Up(X) = {U (X;) : ∈F
p
d}

instead of X , the perceptron learning algorithm is still applicable for the higher order
perceptron on the corresponding spread pairs of the learning object. For clarity, this kind
of perceptron learning algorithm is referred to as the generalized perceptron learning
algorithm.
As the order of the perceptron increases, the connection from the input variables to

the neuron becomes more complicated. However, its learning ability increases consid-
erably. That is, more and more learning objects become realizable since their spread
pairs are linearly separable in the space of the higher order spread weight vector.
In fact, if and only if its order becomes the largest one, i.e., d, the perceptron can
learn and memorize any learning object, which is equivalent to saying that the per-
ceptron can realize any Boolean function. We summarize this result as the following
theorem.

Theorem 2. (i) For any Boolean function b(X) on {−1; 1}d, there exists a dth order
spread weight vector Wd(d) which makes

T (Wd(d); X) = b(X); (6)

for all X ∈ {−1; 1}d.

26 J. Ma /Neurocomputing 62 (2004) 19–37

(ii) If d¿ 2, there exists a Boolean function b(X) on {−1; 1}d which is unable to
be realized by any (d − 1)th order perceptron, i.e., for any (d − 1)th order spread
weight vector Wd−1(d), there exists some X ∈ {−1; 1}d by which

T (Wd−1(d); X) �= b(X): (7)

The proof is given in Appendix A.
We now turn to the higher order TDRNN. That is, the TDRNN consists of n higher

order perceptrons as its processing neurons with the same input array in which the nl
input variables are considered independently. If all these perceptrons are of the pth
order (16p6 nl), the TDRNN is de1ned to be of the pth order. In this situation,
we can apply the perceptron learning algorithm to each of these pth order percep-
trons to train its weights and threshold value for learning and memorizing a bipolar
spatio-temporal sequence.
When the TDRNN is of the (nl)th order, that is, the order of each perceptron in

the TDRNN becomes the largest one—the number of components of the input pattern,
we call it the full order TDRNN. Actually, we have the following theorem on the full
order TDRNN for learning and memorizing bipolar spatio-temporal sequences.

Theorem 3. The full order TDRNN of l-step feedbacks is able to learn and memorize
any bipolar spatio-temporal sequence of the order k if k6 l.

Proof. By Theorem 1, it is possible for the full order TDRNN of l-step feedback
to learn and memorize a bipolar spatio-temporal sequence of the order k when k6 l.
Moreover, the network is able to learn and memorize a bipolar spatio-temporal sequence
S :P1P2 · · ·Pm if and only if it is able to realize the recurrent function:

F(Pi; Pi+1; : : : ; Pi+l−1) = Pi+l; i = 1; 2; : : : ; m − l: (8)

In other words, each perceptron (i.e., processing neuron) j(=1; 2; : : : ; n) is able to learn
and memorize the following learning object:

Aj(S) = {X nl(i) :Pi+l; j = 1; i = 1; 2; : : : ; m − l};
Bj(S) = {X nl(i) : Pi+l; j = −1; i = 1; 2; : : : ; m − l};

where

X nl(i) = vec[Pi; Pi+1; : : : ; Pi+l−1] = [PT
i ; P

T
i+1; : : : ; P

T
i+l−1]

T:

According to Theorem 2, the (nl)th order perceptron is able to realize any learning
object (Aj(S); Bj(S)). Thus, each perceptron in the full order TDRNN can realize
its learning object corresponding to the bipolar spatio-temporal sequence. Therefore,
the full order TDRNN of l-step feedback is able to learn and memorize this bipolar
spatio-temporal sequence. The proof is completed.

By Theorem 3, we have found that the condition l¿ k is really suJcient for learn-
ing and memorizing any bipolar spatio-temporal sequence by the full order TDRNN
of l-step feedback. By Theorem 2(ii), we have also found that the condition of the
full order is even necessary for the TDRNN to learn and memorize any bipolar

J. Ma /Neurocomputing 62 (2004) 19–37 27

spatio-temporal sequence. However, it is hard to implement the full order TDRNN
(or the higher order perceptron) when nl(orp) is large. In fact, the 1rst-order TDRNN
of one-step feedback is already useful for many applications and its implementation is
very easy. Therefore, it is still signi1cant to study the 1rst order TDRNN of one-step
feedback. Obviously, this is Amari’s autoassociative memory model. We will analyze
the memory capacity of this model under the perceptron learning algorithm in the
following section.

4. Memory capacity of the �rst-order TDRNN of one-step feedback

We 1rst give two basic properties of the 1rst-order TDRNN of one-step feedback
on learning and memorizing a bipolar spatio-temporal sequence.

Theorem 4. If P1; P2; : : : ; Pm−1 are linearly independent, the =rst-order TDRNN of
one-step feedback is able to learn and memorize the bipolar spatio-temporal sequence
P1P2 · · ·Pm.

Proof. According to the above de1nition, the 1rst-order TDRNN of one-step feedback
is uniquely de1ned by the weight matrix W and the threshold vector �, where wi;j is
the weight on the feedback line from the processing neuron j to i, �i is the threshold
value of the processing neuron i. So, we need only to prove that there exists such a
set of (W; �) that the network can realize the function:

F(Pi) = Pi+1; i = 1; 2; : : : ; m − 1: (9)

To solve for the weights and the threshold value of the ith processing neuron (a
perceptron) in the network, a solution of Eq. (9) can be found from the following
system of linear equations:

p1;1wi;1 + p1;2wi;2 + · · · + p1; nwi;n + �i = p2; i ;

p2;1wi;1 + p2;2wi;2 + · · · + p2; nwi;n + �i = p3; i ;

· · ·
pm−1;1wi;1 + pm−1;2wi;2 + · · · + pm−1; nwi;n + �i = pm;i;

(10)

where wi;1; wi;2; : : : ; wi;n and �i are the unknown numbers.
Because P1; P2; : : : ; Pm−1 are linearly independent, the rank of the system matrix of

linear equations given by Eq. (10) is just m − 1. Thus, the system of linear equations
has solutions for wi;1; wi;2; : : : ; wi;n; �i. In this way for all the processing neurons, we
certainly have a set of (W; �) that enable the network to realize the function F(Pi) =
Pi+1; i=1; 2; : : : ; m−1. Therefore, the network is able to learn and memorize this bipolar
spatio-temporal sequence. The proof is completed.

28 J. Ma /Neurocomputing 62 (2004) 19–37

By Theorem 4, we have a suJcient condition on bipolar spatio-temporal sequences
for them to be learned and memorized by the 1rst-order TDRNN of one-step feedback.

Theorem 5. With the =rst-order TDRNN of one-step feedback, we have
(i) If n¿ 2 and m6 4, any simple bipolar spatio-temporal sequence can be learned

and memorized.
(ii) If n¿ 3 and m = 5, there exists a simple bipolar spatio-temporal sequence

which cannot be learned and memorized.

Proof. If n¿ 2, for any simple bipolar spatio-temporal sequence P1P2P3P4, where
Pi ∈ {−1; 1}n, the rank of the matrix

A(P1; P2; P3) =

p1;1 p1;2 · · · p1; n 1

p2;1 p2;2 · · · p2; n 1

p3;1 p3;2 · · · p3; n 1

 (11)

is certainly 3. Then, in a similar way to the proof of Theorem 4 we can prove that
there exists a set of (W; �) which enable the network to realize P1P2P3P4. So it can be
learned and memorized by the network via the perceptron learning algorithm. If m¡ 4,
all simple bipolar spatio-temporal sequences are obviously able to be stored. Thus (i)
holds. As to (ii), since n¿ 3, we can easily construct a simple bipolar spatio-temporal
sequence P1P2 · · ·P5 with the following constraints:

P2 = −P1; P4 = −P3;

p2;1 = 1; p3;1 = 1; p4;1 = −1; p5;1 = −1:

If this spatio-temporal sequence can be learned and memorized, the 1rst processing
neuron is able to solve the XOR problem. This is contradictory to the fact that a
(1rst-order) perceptron is unable to solve the XOR problem of the corresponding di-
mension. Therefore, this bipolar spatio-temporal sequence is unable to be learned and
memorized by the network. The proof is completed.

By Theorem 5, we have found that the memory capacity of the network is trivial if
all possible simple bipolar spatio-temporal sequences of the same length are considered
to be stored by the network. This result is just like that of Hop1eld network to store
a group of bipolar patterns as stable states. However, we can analyze the asymptotic
memory capacity of the network which is signi1cant when the size of the network
becomes large.
We now consider that each Pi is an independent random vector and each component

of Pi is an independent random variable which takes the equal probability distribution
on {−1; 1}. In order to give the de1nition of the asymptotic memory capacity, we
introduce the following probability sequence:

P(m; n) = P({S= P1P2 · · ·Pm :S is storable});

J. Ma /Neurocomputing 62 (2004) 19–37 29

where “S is storable” which means that S can be learned and memorized by the
1rst-order TNRNN with one-step feedback via the perceptron learning algorithm. It is
easy to verify that P(m; n) decreases with m.

De�nition 2. An integer function C(n) is the asymptotic memory capacity of the
1rst-order TDRNN of one-step feedback if the following two conditions hold:
(i)

lim
n→∞P(m; n) = 1 (12)

whenever m6C(n);
(ii)

lim
n→∞ inf P(m; n)¡ 1; (13)

whenever m¿C(n).
We say that C(n) is a lower bound of the asymptotic memory capacity if it satis1es

the 1rst condition; and that C(n) is an upper bound of the asymptotic memory capacity
if Eq. (13) holds whenever m¿C(n).

Since P(m; n) decreases with m, we can easily prove that there exists a unique
asymptotic memory capacity (function) of this kind of TDRNN. We further have

Theorem 6. Suppose that C(n) is the asymptotic memory capacity of the =rst-order
TDRNN of one-step feedback. We have C(n)¿C1(n) = n+ 1.

Proof. We let Bm be the set of all bipolar spatio-temporal sequences of the length m
which are storable. Then we have

P(n+ 1; n) = P(Bn+1) =
|Bn+1|
2n(n+1) : (14)

We de1ne

En×n =

e11 e12 · · · e1n

e21 e22 · · · e2n

...
...

. . .
...

en1 en2 · · · enn

;

where eij ∈ {−1; 1} for 16 i; j6 n, and let

,n = {En×n : rank(En×n) = n};
and denote ,∗

n to be the complement set of ,n. We further de1ne

En = |,n|; E∗
n = |,∗

n |:
By Komlos theorem [3] that

lim
n→∞ (E∗

n =2
n2) = 0;

30 J. Ma /Neurocomputing 62 (2004) 19–37

and according to Theorem 4, we have

lim
n→∞P(n+ 1; n) = lim

n→∞
|Bn+1|
2n(n+1) ¿ lim

n→∞
En2n

2n(n+1)

= lim
n→∞

En

2n2
= 1 − lim

n→∞
E∗
n

2n2
= 1:

Because P(m; n) decreases with m, we have

lim
n→∞P(m; n) = 1; for m6 n:

Therefore, C1(n) = n+ 1 is a lower bound of the asymptotic memory capacity of the
1rst-order TDRNN of one-step feedback. The proof is completed.

By Theorem 6, we have found that the asymptotic memory capacity of the 1rst-order
TDRNN of one-step feedback is no less than n+1. It is much better than 0:27n, that is,
approximately, the memory capacity of the same network model under the sum-of-outer
product scheme for storing a simple bipolar spatio-temporal sequence [1].
Although we have analyzed the capacity of the TDRNN on the storage of the

non-periodic spatio-temporal sequences, this procedure can be easily applied to the pe-
riodic spatio-temporal sequences, i.e., the spatio-temporal cycles. In a similar way, we
can de1ne the order of a spatio-temporal cycle and study the capacity of the TDRNN
on the storage of spatio-temporal cycles. Actually, it can be proved by similar analysis
that the capacity of the TDRNN on the storage of spatio-temporal cycles is almost the
same as that of the TDRNN on the storage of (non-periodic) spatio-temporal sequences.

5. Simulation results

In this section, simulation experiments are carried out to demonstrate the performance
of the TDRNN on learning and storing spatio-temporal sequences by the perceptron
learning algorithm as well as its memory capacity. Moreover, we compare the object
perceptron learning algorithm with the sum-of-outer product scheme on the 1rst order
TDRNN of one-step feedback.

5.1. The sample data

Our simulation experiments are undertaken on the bipolar spatio-temporal sequences
of ten Arabic numerals. As shown in Fig. 4, {0; 1; 2; 3; 4; 5; 6; 7; 8; 9} are expressed
by 7 × 7 binary pixies. That is, each number i is expressed by a binary matrix
Qi = (qikl)7×7, where qikl = 1 is represented by a big black circle. For convenience
of application, we use the bipolar representation for each i, i.e., letting qikl = −1
instead of 0 in the binary representation, and also consider it as a bipolar vector
vec[Qi] = [qi11; : : : ; q

i
71; q

i
12; : : : ; q

i
n2; : : : ; q

i
17; : : : ; q

i
77]

T ∈ {±1}49. For these ten spatial
patterns, we de1ne the minimum Hamming distance of each sample pattern Qi to

J. Ma /Neurocomputing 62 (2004) 19–37 31

the others by

d∗
i =minj �=i dH(Qi; Qj) = min{dH(Qi; Qj) : j = 1; : : : ; i − 1; i + 1; : : : ; 10}:

As is well-known in information theory, d∗
1 ; d

∗
2 ; : : : ; d

∗
10 essentially give the bounds of

radii of attraction of these Arabic numbers in the 49-dimensional bipolar space. In fact,
the reasonable radius of attraction of each Qi should be no more than t∗i =[(d∗

i −1)=2],
where [x] denotes the integer part of a real number x. For an associative memory
model, only when the radius of attraction of each Qi is just t∗i , the error probability
of the retrieval of the stored patterns or sequences reaches the minimum in a general
noisy environment.
Based on the Hamming distances between these sample patterns, we have

(t∗1 ; t
∗
2 ; t

∗
3 ; t

∗
4 ; t

∗
5 ; t

∗
6 ; t

∗
7 ; t

∗
8 ; t

∗
9 ; t

∗
10) = (3; 6; 5; 4; 9; 4; 5; 8; 3; 4);

which will be used to design the object values of the radius of attraction of the Arabic
numbers in the OPLA algorithm [6] for learning simple spatio-temporal
sequences.

5.2. Learning complex numeral sequences

We 1rst consider the experiments of the TDRNN for learning and storing complex
numeral sequences by the perceptron learning algorithm. In each experiment, we gen-
erated a higher order numeral sequence and then used a proper TDRNN to learn it by
the perceptron learning algorithm on each processing neuron independently. Typically,
we selected three second-order numeral sequences as follows:

S1 = 0362717416354286590452695847296112137388205391402246798310756643325;

S2 = 19883615342524167023110328649184587926043512768905738220937465471485621;

S3 = 402582913962433681703121593427860832847269014163792206457485051987304495;

where the lengths of S1;S2 and S3 are 67, 71 and 72, respectively.
We began to use the 1rst-order TDRNN of two-step feedback to learn these three

numeral sequences by the perceptron learning algorithm and found that only a small
part of each numeral sequence can be learned and stored in the TDRNN. For example,
the longest subsequence of S1 that can be learned and stored by the TDRNN is
036271741635428659045, with the length 21. But when the second-order TDRNN
is used, S1, S2 and S3 became storable. That is, when we applied the generalized
(second-order) perceptron learning algorithm on each processing neuron, they had been
learned and stored in a second-order TDRNN of two-step feedback. However, as we
successively added some numerals to each of them and maintained the second-order, it
has been shown by the experiments that there exist certain expanded numeral sequences
which cannot be learned and stored in a second-order TDRNN of two-step feedback.
That is, they can only be learned and stored in a more higher order TDRNN of two-step
feedback.
By these and the other experiments, we have found that the TDRNN can learn and

store the complex numeral sequences eJciently by the perceptron learning algorithm.

32 J. Ma /Neurocomputing 62 (2004) 19–37

Moreover, as the order of the TDRNN becomes higher, the memory capacity, i.e., the
length of storable numeral sequence, increases considerably.

5.3. Learning simple numeral sequences and comparison

We then turn to the case of simple numeral sequences. The TDRNN of one-step
feedback was applied to learn and store a simple numeral sequence. Since there are
only ten Arabic numerals, the length of a simple numeral sequence is very limited. In
this speci1c situation, it is easy to learn and store a simple numeral sequence by the
perceptron learning algorithm. Actually, by the experiments we have found that every
simple numeral sequence can be quickly learned and stored in a 1rst-order TDRNN of
one-step feedback by the perceptron learning algorithm.
In order to store a simple numeral sequence with better behavior of associative mem-

ory, we further applied the object perceptron learning algorithm (OPLA) [6] to train
the TDRNN. For a simple numeral sequence S=P1P2 · · ·Pm, if it can be learned and
stored in a TDRNN of one-step feedback by the perceptron learning algorithm, we
only have Pi+1 = F(Pi), where F(·) is the function of the TDRNN. That is, Pi+1 can
be retrieved from Pi. However, in a noisy environment there may appear some errors
on certain bits of Pi, i.e., it may become P̂i with P̂i �= Pi, but the TDRNN is still
required to retrieve Pi+1 from the noisy pattern P̂i. In this way, the sequence can be
retrieved normally in a noisy environment. From the experiments with the perceptron
learning algorithm, we have found that there generally exists a basin of attraction of
Pi such that Pi+1 can be retrieved from any numeral within it. However, the radius
of attraction of Pi may be very small or trivial. To get a reasonable radius of attrac-
tion for each Pi (i = 1; 2; : : : ; m − 1), we applied the OPLA to train the TDRNN
on each processing neuron independently, with ti6 t∗i set as the object radius of
attraction of Pi.
We selected two simple numeral sequences 259471680 and 0314628, with their

lengths being 9 and 7, respectively. It was found by the experiments that they can be
learned and stored in a 1rst-order TDRNN of one-step feedback by the OPLA with
ti¿ t∗i − 2. That is, each Pi except the last one in any of these two simple numeral
sequences obtains the largest and reasonable radius of attraction. However, when we
expanded them by adding the other numerals, it was shown by the experiments that
the OPLA cannot make their expansions storable with ti¿ t∗i − 2. By these and the
other experiments we have found that the memory capacity of the TDRNN of one-step
feedback under the OPLA reduces to a certain degree. The reason is simply that the
requirement of the reasonable radius of attraction for each numeral makes it diJcult
to learn and store a simple numeral sequence in a TDRNN of one-step feedback.
It has been further found by the experiments that the OPLA is better than the

sum-of-outer product scheme on learning and storing a simple numeral sequence in
the 1rst order TDRNN of one-step feedback. First, the OPLA can learn and store a
longer simple numeral sequence than the sum-of-outer product scheme does. Actually,
the sum-of-outer product scheme can only learn and store the shorter simple numeral
sequences such as 274630 and 87160. It cannot learn and store the above two sequences
learned and stored by the OPLA. Second, when a simple numeral sequence is stored

J. Ma /Neurocomputing 62 (2004) 19–37 33

Fig. 4. The sample patterns of 10 Arabic numerals {0; 1; 2; 3; 4; 5; 6; 7; 8; 9}.

by the sum-of-outer product scheme, the radiuses of attraction of some numerals may
be very small, but those of the others may be very large, which is not reasonable for
associative memory. However, the OPLA can maintain reasonable radii of attraction
of the numerals by setting a set of proper object values in advance.

6. Conclusion

We have investigated the capacity of time-delay recurrent neural network (TDRNN)
for learning and memorizing spatio-temporal sequences. By introducing the order of a
spatio-temporal sequence, we have established the match law between a TDRNN and
a spatio-temporal sequence. It has been further proved that the full order TDRNN of
l-step feedback is able to learn and memorize any bipolar (or binary) spatio-temporal
sequence of the order k when k6 l. Furthermore, we have obtained a lower bound
of the asymptotic memory capacity of the 1rst-order TDRNN of one-step feedback
showing that such kind of TDRNN of n processing neurons can learn and memorize
almost all the bipolar (or binary) random spatio-temporal sequences of the 1xed length
which is no more than n when n is large. Finally, the TDRNN has been demonstrated
by the simulation experiments on learning and storing both the simple and complex
spatio-temporal sequences of the Arabic numerals by the perceptron learning algorithm
(Fig 4).

Acknowledgements

The author wishes to thank Prof. Shiyi Shen who 1rst gave the proof of Theorem
2(i) and made some good suggestions on the paper. The author also thanks Mr. Yang
Zhao for his support of the experiments.

34 J. Ma /Neurocomputing 62 (2004) 19–37

Appendix A. Proof of Theorem 2

(i) This is certainly equivalent to the proposition that any learning object (Ad;Ad)
is linearly separable under Wd(d), where Ad is an arbitrary subset of {−1; 1}d and Ad

is the complement set of Ad. We now prove it by induction. For the sake of clarity,
we use the notation X d = [x1; x2; : : : ; xd]T ∈ {−1; 1}d in Appendix A.
When d=1, F1

1={�; {1}}, N 1
1 =2 and W 1(1)={W (1; �); W (1; {1})}. In this case,

all the possible Boolean functions from {−1; 1} to {−1; 1} are

b(X) = 1; b(X) = −1; b(X) = X; b(X) = −X; (A.1)

corresponding to the learning objects ({−1; 1}; �); (�; {−1; 1}); ({1}; {−1}); ({−1}; {1})
respectively. Certainly, these learning objects are linearly separable. In fact, T (W 1(1); X)
can realize these learning objects (Boolean functions) by the weight vectors (1; 0);
(−1; 1); (0; 1); (0;−1), respectively. Therefore it holds when d= 1.

We assume that any learning object (Ad;Ad) is linearly separable under Wd(d).
We now need only to prove that any learning object (Ad+1;Ad+1) is linearly separable
under Wd+1(d+1) with the above inductive assumption. In order to do so, we introduce
the following notations:

Ad+1(xd+1) = {X d = [x1; x2; : : : ; xd]T : [(X d)T; xd+1]T ∈Ad+1}; (A.2)

where xd+1=±1. Since Ad+1(a) ⊂ {−1; 1}d(a=±1), by the induction assumption, the
learning object (Ad+1(a);Ad+1(a)) is linearly separable. Then there exists a dth order
spread weight vector Wd(a; d) = {w(a; d;) : ∈Fd

d} by which we have

∑
 ∈Fd

d

w(a; d;)U (X d;)

{
¿ 0 if X d ∈Ad+1(a);

¡ 0 if X d �∈ Ad+1(a):
(A.3)

Now we de1ne the (d+ 1)th order spread weight vector Wd+1(d+ 1) as follows:
(1) For ∈Fd

d ⊂ Fd+1
d+1,

w(d+ 1;) = w(1; d;) + w(−1; d;): (A.4)

(2) For the set { ; d+ 1} = ∪ {d+ 1} ∈Fd+1
d+1,

w(d+ 1; { ; d+ 1}) = w(1; d;) − w(−1; d;): (A.5)

By Wd+1(d+ 1) so de1ned, we have for each X d+1 ∈ {−1; 1}d+1

∑
1∈Fd+1

d+1

w(d+ 1; 1)U (X d+1; 1)

=
∑
 ∈Fd

d

w(d+ 1;)U (X d;) +
∑
 ∈Fd

d

w(d+ 1; { ; d+ 1})U (X d;)xd+1

J. Ma /Neurocomputing 62 (2004) 19–37 35

=
∑
 ∈Fd

d

[w(1; d;) + w(−1; d;) + (w(1; d;) − w(−1; d;))xd+1]U (X d;)

=

2
∑
 ∈Fd

d

w(1; d;)U (X d;) if xd+1 = 1;

2
∑
 ∈Fd

d

w(−1; d;)U (X d;) if xd+1 = −1:

Thus, we have

∑
 ∈Fd+1

d+1

w(d+ 1;)U (X d+1;)

{
¿ 0 if X d+1 ∈Ad+1;

¡ 0 if X d+1 �∈ Ad+1:
(A.6)

Therefore any learning object (Ad+1;Ad+1) is linearly separable under Wd+1(d + 1).
The proof of (i) is completed.
(ii) This is equivalent to the proposition that there exists a learning object (Ad;Ad)

which is not linearly separable under Wd−1(d). We again prove it by induction and
begin with d = 2. In this case, W 1(2) = {�; {1}; {2}}. Then the perceptron is of the
1rst order. We let A2

0 ={(1; 1); (−1;−1)}. Then the learning object (A2
0;A

2
0) is just the

XOR problem and it is not linearly separable. Thus it holds when d= 2.
We assume that there exists a learning object (Ad

0 ;A
d
0) which is not linearly sepa-

rable under Wd−1(d). Then we need only to prove there also exists a learning object
(Ad+1

0 ;Ad+1
0) which is not linearly separable under Wd(d + 1). We now prove it by

contradiction. We assume that it does not hold in the case of d + 1, that is, for any
Ad+1 ⊂ {−1; 1}d, (Ad+1;Ad+1) is linearly separable under Wd(d+ 1). We now let

Ad+1
0 = {[(X d)T; 1]T :X d ∈Ad

0} ∪ {[(X d)T;−1]T :X d ∈Ad
0};

Bd+1
0 = {[(X d)T;−1]T :X d ∈Ad

0} ∪ {[(X d)T; 1]T :X d ∈Ad
0}

=Ad+1
0

Because (Ad+1
0 ;Ad+1

0)=(Ad+1
0 ;Bd+1

0) is linearly separable under Wd(d+1), there exists
a dth order spread weight vector Wd(d+ 1) by which we have

∑
 ∈Fd

d+1

w(d+ 1;)U (X d+1;)

{
¿ 0 if X d+1 ∈Ad+1

0 ;

¡ 0 if X d+1 ∈Bd+1
0 :

(A.7)

In a similar way as (i), we further have∑
 ∈Fd

d+1

w(d+ 1;)U (X d+1;)

=
∑
1∈Fd

d

w(d+ 1; 1)U (X d; 1) +
∑

1∈Fd−1
d

w(d+ 1; 1 ∪ {d+ 1})U (X d; 1)xd+1:

36 J. Ma /Neurocomputing 62 (2004) 19–37

When X d ∈Ad
0 , since [(X d)T; 1]T ∈Ad+1

0 and [(X d)T;−1]T ∈Bd+1
0 , we have the fol-

lowing two inequalities:∑
1∈Fd

d

w(d+ 1; 1)U (X d; 1)

+
∑

1∈Fd−1
d

w(d+ 1; 1 ∪ {d+ 1})U (X d; 1)xd+1¿ 0; (A.8)

∑
1∈Fd

d

w(d+ 1; 1)U (X d; 1)

−
∑

1∈Fd−1
d

w(d+ 1; 1 ∪ {d+ 1})U (X d; 1)xd+1 ¡ 0: (A.9)

Subtracting Eq. (A.9) from Eq. (A.8), we have

2
∑

1∈Fd−1
d

w(d+ 1; 1 ∪ {d+ 1})U (X d; 1)xd+1 ¿ 0: (A.10)

Therefore, when X d ∈Ad
0 , we have∑

1∈Fd−1
d

w(d+ 1; 1 ∪ {d+ 1})U (X d; 1)xd+1 ¿ 0: (A.11)

On the other hand, when X d �∈ Ad
0 or X d ∈Ad

0 , since [(X d)T;−1]T ∈Ad+1
0 and

[(X d)T; 1]T ∈Bd+1
0 , we again have the following two inequalities:∑

1∈Fd
d

w(d+ 1; 1)U (X d; 1)

+
∑

1∈Fd−1
d

w(d+ 1; 1 ∪ {d+ 1})U (X d; 1)xd+1 ¡ 0; (A.12)

∑
1∈Fd

d

w(d+ 1; 1)U (X d; 1)

−
∑

1∈Fd−1
d

w(d+ 1; 1 ∪ {d+ 1})U (X d; 1)xd+1¿ 0: (A.13)

Subtracting Eq. (A.13) from Eq. (A.12), we have

2
∑

1∈Fd−1
d

w(d+ 1; 1 ∪ {d+ 1})U (X d; 1)xd+1 ¡ 0: (A.14)

J. Ma /Neurocomputing 62 (2004) 19–37 37

Therefore, when X d �∈ Ad
0 , we have∑

1∈Fd−1
d

w(d+ 1; 1 ∪ {d+ 1})U (X d; 1)xd+1 ¡ 0: (A.15)

Then we have (Ad
0 ;A

d
0) is linearly separable under Wd−1(d). This is contradictory

to our inductive assumption. Thus it holds in the case of d + 1 and the proof is
completed.

References

[1] S. Amari, Associative memory and its statistical-neurodynamical analysis, Springer Ser. Synergetics 42
(1988) 85–99.

[2] J.J. Hop1eld, Neural networks and physical systems with collective computational abilities, Proc. Natl.
Acad. Sci. USA 79 (1982) 2554–2558.

[3] J. Komlos, On the determinant of (0,1) matrices, Stud. Sci. Math. Hung. 2 (1967) 7–21.
[4] J. Ma, The stability of the generalized Hop1eld networks in randomly asynchronous mode, Neural

Networks 10 (1997) 1109–1116.
[5] J. Ma, Simplex memory neural network, Neural Networks 10 (1997) 25–29.
[6] J. Ma, The object perceptron learning algorithm on generalised Hop1eld networks, Neural Comput.

Appl. 8 (1999) 25–32.
[7] K. Narendra, K. Parthasarathy, Identi1cation and control of dynamical systems using neural networks,

IEEE Trans. Neural Networks 1 (1990) 4–27.
[8] F.J. Pineda, Dynamics and architecture for neural computation, J. Complexity 4 (1988) 216–245.
[9] G. Puskorius, L. Feldman, Neurocontrol of dynamical systems with Kalman 1lter trained recurrent

networks, IEEE Trans. Neural Networks 5 (1994) 279–297.
[10] A.J. Robinson, F. Fallside, Static and dynamic error propagation networks with application to speech

coding, in: D.Z. Anderson (Ed.), Neural Information Processing Systems, American Institute of Physics,
New York, 1988, pp. 632–641.

[11] A.J. Robinson, F. Fallside, A recurrent error propagation speech recognition system, Comput. Speech
Lang. 5 (1991) 259–274.

[12] F. Rosenblatt, Principles of Neurodynamics, Spartan Books, New York, 1962.
[13] R.E. Rumelhart, G.E. Hinton, R.J. Williams, Parallel Distributed Processing (PDP): Exploration in the

Microstructure of Cognition, MIT Press, Cambridge, MA, 1986.
[14] E.A. Wan, Times series prediction by using a connectionist network with internal delay lines, in: A.S.

Weigend, N.A. Gershenfeld (Eds.), Time Series Prediction, Forecasting the Future and Understanding
the Past, Addison-Wesley, Reading, MA, 1994, pp. 195–217.

[15] R.J. Williams, D. Zipser, A learning algorithm for continually running fully recurrent neural network,
Neural Comput. 1 (1989) 270–280.

Jinwen Ma received the Master of Science degree in applied mathematics from
Xi’an Jiaotong University in 1988 and the Ph.D. degree in probability theory and
statistics from Nankai University in 1992. From July 1992 to November 1999, he
was a Lecturer or Associate professor at Department of Mathematics, Shantou Uni-
versity. From December 1999, he worked as a full professor at Institute of Mathe-
matic, Shantou University. In September 2001, he was transferred to the Department
of Information Science at the School of Mathematical Sciences, Peking University.
During 1995 and 2003, he also visited and studied several times at Department
of Computer Science and Engineering, the Chinese University of Hong Kong as a
Research Associate or Fellow. He has published more than 40 academic papers on
neural networks, pattern recognition, arti1cial intelligence, and information theory.

	The capacity of time-delay recurrent neural network for storing spatio-temporal sequences
	Introduction
	The TDRNN and a match law
	The higher order TDRNNs
	Memory capacity of the first-order TDRNN of one-step feedback
	Simulation results
	The sample data
	Learning complex numeral sequences
	Learning simple numeral sequences and comparison

	Conclusion
	Acknowledgements
	Appendix A. Proof of Theorem 2
	References

