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Gaussian mixture modeling is a powerful approach for data analysis and the determina-
tion of the number of Gaussians, or clusters, is actually the problem of Gaussian mixture
model selection which has been investigated from several respects. This paper proposes
a new kind of automated model selection algorithm for Gaussian mixture modeling via
an entropy penalized maximum-likelihood estimation. It is demonstrated by the experi-
ments that the proposed algorithm can make model selection automatically during the
parameter estimation, with the mixing proportions of the extra Gaussians attenuating
to zero. As compared with the BYY automated model selection algorithms, it converges
more stably and accurately as the number of samples becomes large.
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1. Introduction

Since Gaussian mixture populations are very common in various fields of practical

applications, Gaussian mixture modeling is a powerful approach for data analysis.

Actually, considerable effort has been made on Gaussian mixture modeling as well

as its applications for clustering analysis on a sample data set.15 Although there

have been various statistical or unsupervised competitive learning methods to do

such a task, e.g. EM algorithm17 for maximum-likelihood, K-means algorithm14

for the Mean Square Error (MSE) clustering and the self-organizing network for

hyperellipsoidal clustering (HEC),9 it is usually assumed that the number K of

Gaussians, or clusters, in the data set is pre-known. However, in many instances

this key information is not available and then the selection of an appropriate number

of Gaussians must be made before or during the estimation of the parameters in the
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mixture. Since the number K of Gaussians is just the scale of the mixture model,

its determination is actually the problem of model selection for Guassian mixture

modeling. In fact, it is a rather difficult problem.8

The earliest possible method for solving this model selection problem may be

to choose the optimal number K∗ of Gaussians (or clusters) by the Akaike’s infor-

mation criterion2 or its extensions.4,5,19 Similarly, several indexes of cluster validity

have been also proposed to choose the optimal number K∗ (e.g. Refs. 3, 16 and

21). But the process of evaluating an information criterion or validity index incurs

a large computational cost since we need to repeat the entire parameter estima-

tion process at a number of different values of K, even though such a process is

attempted to be organized in a more efficient way, e.g. embedding the checking of

the criterion value within clustering as in ISODATA.

From the respect of neural networks, competitive learning (CL) has been de-

veloped for clustering analysis and vector quantization.6 However, the conven-

tional competitive learning algorithms such as the classical competitive learning

algorithm18 and the frequency sensitive competitive learning algorithm,1 can be

only considered as adaptive versions of K-means algorithm and thus they are

unable to solve this model selection problem. In order to do so, Xu, Krzyzak and

Oja proposed a new kind of competitive learning algorithm, called rival penalized

competitive learning (RPCL) algorithm,22 which has the ability of automatically

allocating an appropriate number of weight vectors for a sample data set, with the

other extra ones being pushed far away from the sample data. Therefore, the RPCL

algorithm can be used to solve the above model selection problem by choosing a

number K of the weight vectors which is surely larger than the number of actual

clusters in the sample data set. In some extended versions of the RPCL algorithm,24

the weight vectors have been generalized to Gaussian densities, which makes it

more suitable for the RPCL algorithm to be applied to solving the model selection

problem for Gaussian mixture. Recently, Ma, Wang and Xu proposed a cost function

by which a generalized RPCL algorithm, called distance sensitive RPCL algorithm,

has been proposed with a more powerful performance and easier implementation.10

Proposed in 199523 and systematically developed in the past years,25–27

Bayesian Ying–Yang (BYY) harmony learning acts as a general statistical learning

framework not only for understanding several existing major learning approaches

but also for tackling the learning problem on a set of finite samples with a new

learning mechanism that makes model selection to be implemented automatically

during parameter learning via a new class of model selection criteria. Specifically,

the BYY harmony learning can be applied to the model selection problem for

Gaussian mixture modeling. In fact, Ma, Wang and Xu have already implemented

this new mechanism on a BI-architecture and a B-architecture of the BYY system

via a gradient, iterative and two annealing algorithms to solve the model selec-

tion problem automatically during the parameter learning.11–13,20 It has been

demonstrated by simulation experiments that the number of Gaussians can be

automatically selected for the sample data set, with the mixing proportions of the

extra Gaussians attenuating to zero.
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In the current paper, based on the fact that reducing the Shannon entropy of the

mixing proportions in a Gaussian mixture can lead to some of these proportions to

attenuate to zero, i.e. to eliminate the corresponding Gaussians from the mixture,

we proposed an entropy penalized maximum-likelihood estimation (MLE) iterative

algorithm which can also make the parameter estimation with automated model

selection. It is further demonstrated by the simulation experiments.

In the sequel, the entropy penalized maximum-likelihood estimation (MLE)

iterative algorithm is derived in Sec. 2. In Sec. 3, several simulation experiments

are conducted to demonstrate the proposed algorithm, with a comparison between

it and those BYY model selection algorithms. A brief conclusion is given in Sec. 4.

2. Entropy Penalized MLE Iterative Algorithm

We consider the following Gaussian mixture model:

P (x|Θ) =

K
∑

j=1

αjP (x|mj , Σj) , αj ≥ 0,

K
∑

j=1

αj = 1 (1)

where

P (x|mj , Σj) =
1

(2π)
d
2 |Σj |

1

2

e−
1

2
(x−mj)

T Σ−1

j
(x−mj) (2)

and where K is the number of Gaussians, x denotes a sample vector and d is the

dimensionality of x. The parameter vector Θ consists of the mixing proportions

αj , the mean vectors mj , and the covariance matrices Σj = (σ
(j)
pq )d×d which are

assumed symmetric and positive definite.

In this mixture model, αj is the proportion or probability of Gaussian (com-

ponent) j in the mixture population. Then, the Shannon entropy of these mixing

proportions, i.e. I(α) =
∑K

j=1 αj log αj , represents the uncertainty of the distri-

bution of these mixing proportions. Here and hereafter, the base of the logarithm

is always the natural number. According to the property of Shannon entropy, as

K increases, I(α) generally increases. Oppositely, as I(α) decreases, some mixing

proportions may be forced to be zero or a small number. That is, the corresponding

Gaussians are essentially eliminated from the mixture. Thus, the number of actual

Gaussians is decreased. According to this characteristic, we can penalize the MLE

by adding certain minus Shannon entropy of the mixing proportions to the log

maximum likelihood (ML) function so that the entropy penalized MLE is able to

make the parameter estimation with automated model selection. In the following,

we will realize this idea by proposing an entropy penalized ML objective function

and establishing an iterative algorithm to maximize it.

Given a sample data set S = {xt}
N
t=1 from a Gaussian mixture with K∗ com-

ponents and K ≥ K∗, the log likelihood function on the mixture model P (x|Θ) is

given by

L(Θ) =

N
∑

t=1

log P (xt|Θ) . (3)
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The entropy penalized ML objective function can be constructed by

f(Θ) = L(Θ) − βNI(α) , (4)

where β > 0 is the penalty factor which is a constant.

According to this objective function f(Θ), we have an entropy penalized

maximum-likelihood estimate:

Θ̂ = arg max
Θ

f(Θ) . (5)

By Lagrange’s method of multipliers for Θ̂, we begin to define the λ-function:

L(Θ, λ) = f(Θ) + λ



1 −

K
∑

j=1

αj



 . (6)

Using the general methods for matrix derivatives,7 we are led to the derivatives of

L(Θ, λ) with respect to each αj , mj , Σj and λ as follows:

∂L(Θ, λ)

∂αj

=

N
∑

t=1

P (xt|mj , Σj)

P (xt|Θ)
+ βN(1 + log αj) − λ ; (7)

∂L(Θ, λ)

∂mj

=
N
∑

t=1

αjP (xt|mj , Σj)

P (xt|Θ)
Σ−1

j (xt − mj)(−1) ; (8)

∂L(Θ, λ)

∂Σj

=

N
∑

t=1

αjP (xt|mj , Σj)

P (xt|Θ)

1

2
Σ−1

j [(xt − mj)(xt − mj)
T − Σj ]Σ

−1
j ; (9)

∂L(Θ, λ)

∂λ
= 1 −

K
∑

j=1

αj . (10)

Letting these derivatives to zero and introducing the posteriori probabilities:

hj(t) =
αjP (xt|mj , Σj)

P (xt|Θ)
, (11)

we have the following equalities that hold at Θ̂:

N
∑

t=1

hj(t) + βNαj(1 + log αj) − αjλ = 0 ; (12)

N
∑

t=1

hj(t)(xt − mj) = 0 ; (13)

N
∑

t=1

hj(t)[(xt − mj)(xt − mj)
T − Σj ] = 0 ; (14)

K
∑

j=1

αj = 1 . (15)
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According to Eqs. (12) and (15), we further have

λ =

K
∑

j=1

N
∑

t=1

hj(t) + βN

K
∑

j=1

(αj + αj log αj)

= N + βN(1 − I(α))

= N(1 + β(1 − I(α))) . (16)

Then, from the Eqs. (12)–(14), we obtain the following iterative algorithm for Θ̂:

α+
j =

1

N(1 + β(1 − I(α)))

(

N
∑

t=1

hj(t) + βNαj(1 + log αj)

)

; (17)

m+
j =

1
∑N

t=1 hj(t)

N
∑

t=1

hj(t)xt ; (18)

Σ+
j =

1
∑N

t=1 hj(t)

N
∑

t=1

hj(t)(xt − mj)(xt − mj)
T . (19)

As compared with the EM algorithm for Gaussian mixture, this iterative

algorithm implements a penalty mechanism on the mixing proportions during the

iterations, which leads to the automated model selection. The penalty factor β can

be selected by experience.

3. Simulation Results

In this section, simulation experiments are carried out to demonstrate the entropy

penalized MLE iterative algorithm for both model selection and parameter esti-

mation on a set of sample data from a Gaussian mixture. Moreover, this iterative

algorithm is compared with the BYY model selection algorithms.

3.1. The sample data

We begin with a description of the seven sets of sample data used for our simulation

experiments. We conducted four Monte Carlo experiments in which samples were

drawn from a mixture of four or three bivariate Gaussians densities (i.e. d = 2).

As shown in Fig. 1, each data set of samples are generated with a certain degree

of overlap among the Gaussians (clusters) in the mixture. They are four typical sets

of sample data from Gaussian mixtures. The Gaussians in S1 are sphere-shaped,

with equal number of samples. But those in S2 are ellipse-shaped, with different

numbers of samples. Moreover, S3 consists of three very flat Gaussians and S4 has a

small number of samples, with similar structure as S2. The detailed parameters for

these four sets of sample data are given in Table 1 where mi, Σi = [σi
jk ]2×2, αi and

Ni denote the mean vector, covariance matrix, mixing proportion and the number

of samples of the ith cluster (Gaussian), respectively.
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Fig. 1. Four sets of sample data used in the experiments. (a) Set S1; (b) Set S2; (c) Set S3;
(d) Set S4.

Table 1. The parameters to the four sets of sample data in the actual Gaussian
mixtures.

The Sample Set Gaussian mi σi

11
σi

12
σi

22
αi Ni

S1 Gaussian 1 (2.50, 0) 0.50 0 0.50 0.25 400

(N = 1600) Gaussian 2 (0, 2.50) 0.50 0 0.50 0.25 400

Gaussian 3 (−2.50, 0) 0.50 0 0.50 0.25 400

Gaussian 4 (0, −2.50) 0.50 0 0.50 0.25 400

S2 Gaussian 1 (2.50, 0) 0.45 −0.25 0.55 0.34 544

(N = 1600) Gaussian 2 (0, 2.50) 0.65 0.20 0.25 0.28 448

Gaussian 3 (−2.50, 0) 1 0.10 0.35 0.22 352

Gaussian 4 (0, −2.50) 0.30 0.15 0.80 0.16 256

S3 Gaussian 1 (2.50, 0) 0.10 −0.20 1.25 0.50 600

(N = 1200) Gaussian 2 (0, 2.50) 1.25 0.35 0.15 0.30 360

Gaussian 3 (−1, −1) 1 −0.80 0.75 0.20 240

S4 Gaussian 1 (2.50, 0) 0.28 −0.20 0.32 0.34 68

(N = 200) Gaussian 2 (0, 2.50) 0.34 0.20 0.22 0.28 56

Gaussian 3 (−2.50, 0) 0.50 0.04 0.12 0.22 44

Gaussian 4 (0, −2.50) 0.10 0.05 0.50 0.16 32



December 3, 2004 16:21 WSPC/115-IJPRAI 00381

Entropy Penalized Automated Model Selection 1507

3.2. Automated model selection

We implement the entropy penalized MLE iterative algorithm on those four sample

data sets always with K ≥ K∗, respectively. The parameters are initialized

randomly within certain intervals, satisfying the required constraints. The penalty

factor β is selected to be 0.15. In all the experiments, the algorithm is stopped when

|f(Θnew
k ) − f(Θold

k )| < 10−7.

The experimental results on S1 and S2 are given in Figs. 2 and 3, respectively,

with case K = 8 and K∗ = 4. We observe that four Gaussians are finally located

accurately, while the mixing proportions of the other four Gaussians were reduced

to 0.002 or below, i.e. these Gaussians are extra and can be discarded. That is, the

correct number of the Gaussians has been automatically determined on these data

sets.

Moreover, the experiment has been made on S3 with case K = 8, K∗ = 3. As

shown in Fig. 4, the actual Gaussians are very flat. However, three Gaussians are still

located accurately, while the mixing proportions of the other five extra Gaussians

are no more than 0.0012. That is, the correct number of the Gaussians can still

be determined on such a special data set. Furthermore, the iterative algorithm is

also implemented on S4 with K = 8, K∗ = 4. As shown in Fig. 5, each cluster has

a small number of samples, the correct number of Gaussians can still be detected,

with the mixing proportions of other four extra Gaussians reduced below 0.008.
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Fig. 2. The experimental result on S1 (stopped after 35,015 iterations). In this and the follow-

ing three figures, the contour lines of each Gaussian are retained unless its density is less than
e−3 [peak].
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Fig. 3. The experimental result on S2 (stopped after 33,747 iterations).
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Fig. 4. The experimental result on S3 (stopped after 5,497 iterations).
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Fig. 5. The experimental result on S4 (stopped after 11,339 iterations).

Table 2. The resulting parameters of the iterative algorithm on each of the four sets of
sample data.

Sample Set Gaussian mi σi

11
σi

12
σi

22
αi

S1 Gaussian 1 (2.4785, −0.0010) 0.4924 0.0103 0.4200 0.2457

Gaussian 2 (0.0616, 2.4988) 0.4779 −0.0236 0.5219 0.2504

Gaussian 3 (−2.5135, 0.0221) 0.4780 0.0186 0.4498 0.2492

Gaussian 4 (−0.0285, −2.5475) 0.4814 0.0058 0.4504 0.2489

S2 Gaussian 1 (2.4875, 0.0344) 0.4403 −0.2362 0.5255 0.3502

Gaussian 2 (−0.0166, 2.4829) 0.5951 0.1987 0.2750 0.2830

Gaussian 3 (−2.5208, 0.043) 0.9377 0.0765 0.3069 0.2099

Gaussian 4 (−0.0158, −2.3545) 0.3393 0.1771 0.9056 0.1529

S3 Gaussian 1 (2.4773, −0.0152) 0.1026 −0.2051 1.2636 0.5302

Gaussian 2 (0.0527, 2.5376) 1.1736 0.3114 0.1350 0.2872

Gaussian 3 (−1.0963, −0.9217) 0.9659 −0.7671 0.7138 0.1786

S4 Gaussian 1 (2.4999, 0.0911) 0.3269 −0.2234 0.3260 0.3517

Gaussian 2 (−0.0911, 2.3847) 0.3621 0.2048 0.1817 0.2642

Gaussian 3 (−2.3639, 0.0381) 0.5092 0.0061 0.0485 0.2065

Gaussian 4 (0.0769, −2.4808) 0.0938 0.0746 0.5272 0.1448
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3.3. Parameter estimation

In addition to the correct model selection on K, we further compare the converged

values of parameters (discarding the extra Gaussians) with those parameters in the

mixture that the samples come from. All the empirical results of the parameters in

the experiments on the four sample data sets are put into Table 2 as follows.

Comparing the numbers of Table 2 with those corresponding in Table 1, we

have found that the iterative algorithm converges usually with a low average error

between the estimated parameters and the true parameters being less than 0.1.

3.4. The penalty factor and the comparison

We have further tested the penalty factor β in the range [0, 1] by the simula-

tion experiments on these four sample data sets. By a large number of simulation

experiments, we have found that when β ∈ [0.08, 0.21], the entropy penalized MLE

iterative algorithm can converge correctly. However, when β < 0.08, the entropy

penalized MLE iterative algorithm cannot always eliminate the extra Gaussians

from the mixture, that is, the penalty power is too weak to eliminate all the extra

Gaussians. On the other hand, when β > 0.21, the entropy penalized MLE iterative

algorithm cannot always maintain the correct number of Gaussians in the mixture,

that is, the penalty power is too strong to maintain the actual Gaussians in the

mixture. Therefore, the penalty factor can be selected in a large range. According to

the accuracy of the estimation and the universality, the best penalty factor is around

0.15, which is just the value of β we used in the above simulation experiments.

Finally, we have made a comparison between the entropy penalized MLE

iterative algorithm and the BYY model selection algorithms11–13,20 on these four

sample data sets. We have found that the two kinds of algorithms generally have

similar results. However, when the number of samples are large such as S1,S2, the

entropy penalized MLE iterative algorithm converges more stably and accurately,

however it costs more time. But when the number of samples is small such as S4,

the BYY model selection algorithm converges more accurately.

4. Conclusions

We have investigated the automated model selection on Guassian mixture modeling

from the point of view of penalizing the Shannon entropy of the mixing proportions

on maximum-likelihood estimation. An entropy penalized MLE iterative algorithm

is derived for automated model selection with parameter estimation. By simulation

experiments we have found that as long as the overlap among the Gaussians or

clusters in a data set is not too serious, the number of Gaussians can be correctly

determined automatically with a good estimation of parameters of each Gaussian,

even on a data set of a small sample size. In comparison with the BYY model

selection algorithms, the entropy penalized MLE iterative algorithm converges more

stably and accurately when the number of samples becomes large.
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