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Abstract. The mixture of Gaussian process functional regressions (mix-
GPFR) utilizes a linear combination of certain B-spline functions to fit
the mean functions of Gaussian processes. Although mix-GPFR makes the
mean functions active in the mixture of Gaussian processes, there are two
limitations: (1). This linear combination approximation introduces many
parameters and thus a heavy cost of computation is paid for learning these
mean functions. (2). It is implicitly assumed that the mean functions of
different components share the same degree of smoothness because there
is a parameter controlling the smoothness globally. In order to get rid of
these limitations, we propose a new kind of EM algorithm for mixtures of
Gaussian processes with average mean functions from time-aligned batch
trajectory or temporal data. In this way, the mean functions are iteratively
updated according to the distributed trajectory data of the estimated
Gaussian processes at each iteration of the EM algorithm and the effective-
ness of this estimation is also theoretically analyzed. It is demonstrated by
the experimental results on both synthetic and real-world datasets that
the proposed method performs well.

1 Introduction

Gaussian process (GP) [1] is the dominant non-parametric Bayesian model and
has been applied in many research fields [2–4]. In machine learning, a Gaussian
process is determined by its mean function and covariance function. Usually,
Gaussian processes are used for nonlinear regression or classification, but they
can also be used to process batch datasets [5].

The mean function of Gaussian processes is important for processing batch
datasets. Usually, the mean function is assumed to be zero. However, the zero
mean function fails to model batch datasets with a shared global trend. Shi pro-
posed the Gaussian Process Functional Regression (GPFR) model [5,6], which
provides a feasible way to learn nonlinear mean functions. In GPFR, the mean
function is assumed to be a linear combination of B-spline basis functions. How-
ever, GPFR fails to model heterogeneous/multi-modal data accurately [7]. In real
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applications, the curves may be generated from different signal sources, thus a
single GPFR is not flexible enough to model all the curves. Shi et al. suggested
introducing mixture structures on GPFRs (mix-GPFR) [7] to further enhance
the model flexibility. In mix-GPFR, curves generated by a common signal source
are regarded as a GPFR component. This model is naturally suitable for the
curve clustering task. Recently, Wu and Ma [8] further extended mix-GPFR to
a Two-layer Mixture of Gaussian Process Functional Regressions (TMGPFR)
for modeling general stochastic processes from different sources.

The mix-GPFR model suffers from several problems. First, the number of
B-spline basis functions D is difficult to set in practice. A large D leads to over-
fitting, while a small D results in under-fitting, and the performances are usually
frustrating in both circumstances. One can run the mix-GPFR with different D
and choose the most proper D by trial and error, but this procedure is tedious
and time-consuming. Second, different GPFR components in mix-GPFR share
a common D. Therefore, when different components have different smoothness,
it would be even more difficult to set a proper D, as illustrated in Sect. 3.1 and
Fig. 1. Third, learning coefficients of B-spline basis functions in the M-step of
the EM algorithm is both time-consuming and difficult since there are many
local maximums and the optimization procedure often gets trapped in a local
maximum as indicated [9].

To tackle these problems, we propose the mixture of Gaussian Processes
with Average Mean Functions (mix-GPAVM). In the proposed method, the mean
functions are estimated non-parametrically by averaging observations. Compared
with mix-GPFR, this method is specifically designed for time-aligned datasets
and it can adjust the smoothness in each component adaptively. Using average
mean functions in the EM algorithm for learning mixtures of Gaussian processes
is also more efficient than mix-GPFR. Experimental results on both synthetic
and real-world datasets demonstrate the effectiveness of the proposed method.

2 Preliminaries

Suppose we are given a batch dataset D = {Di}N
i=1, each Di = {(xim, yim)}Ni

m=1

can be regarded as a sampled signal from an underlying function yi(x). Gaussian
Process Functional Regression (GPFR) assumes that these functions {yi(x)}N

i=1

share a global mean function μ(x) and a structured noise τ(x). More specifi-
cally, Shi et al. [6] assume that μ(x) is a linear combination of D B-spline basis
functions {φj(x)}D

j=1, and the noise term τ(x) is a Gaussian process:

yi(x) = μ(x) + τ(x) , μ(x) =
D∑

j=1

bjφj(x) , τ(x) ∼ GP(0, c(x, x′;θ)).

Here, c(x, x′;θ) is the covariance function of the Gaussian process and θ is the
parameter. More compactly, we can write this model as yi(x) ∼ GPFR(x;b,θ).
Both θ = [b1, · · · , bD]ᵀ and the coefficients of B-spline basis functions b need to
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be learned. We apply the maximum likelihood method to learn these param-
eters. Let yi = [yi1, · · · , yiNi

]ᵀ, xi = [xi1, · · · , xiNi
]ᵀ, Φi = [φj(xim)]Ni×D,

Ci = [c(xim, cin;θ)]Ni×Ni
, then yi|xi ∼ N (Φib,Ci). Therefore, the parame-

ter learning boils down to maximizing

N∑

i=1

log N (yi;Φib,Ci) =
N∑

i=1

−1
2

log |Ci| − 1
2
(yi −Φib)ᵀC−1

i (yi −Φib)+ const.

Suppose we are given an (N +1)-th curve DN+1 = {(xN+1,m, yN+1,m)}N∗
m=1 and

need to predict the response at input x∗. According to the conditional property
of multivariate Gaussian distribution [1,10], we predict the response as

ŷ = φᵀ
∗b + c∗C−1

N+1(yN+1 − ΦN+1b),
φ∗ = [φ1(x∗), · · · , φD(x∗)]ᵀ, c∗ = [c(x∗, xN+1,1;θ), · · · , c(x∗, xN+1,N∗ ;θ)]ᵀ

Furthermore, to enhance the model flexibility and deal with the heterogeneity
problem, a mixture of GPFR (mix-GFPR) was proposed [7]. In mix-GPFR, we
assume that there are K GPFR components GPFR(x;bk,θk) and each Di is
generated from one of them given the latent indicator variable zi,

yi(x)|zi = k ∼ GPFR(x;bk,θk), i = 1, 2, · · · , N. (1)

The mix-GPFR model is usually learned by the EM algorithm [11]. The final
prediction is given by a weighted sum of the results predicted by each component
separately.

3 Proposed Approach

3.1 Time Aligned Batch Dataset and Average Mean Functions

In general, these signals may have different lengths, i.e., Ni �= Nj for i �= j.
GPFR enables us to deal with such variable-length signals effectively. When
these signals are sampled at the same time-steps, the question can be simplified.
We first define the time-aligned batch dataset.

Definition 1 (Time-aligned batch dataset). A batch dataset D = {Di}N
i=1

is said to be time-aligned if Ni = Nj = T for all i, j = 1, · · · , N and xit =
xjt = xt for all i, j = 1, · · · , N, t = 1 · · · T . In this case, each Di consists of
{(xt, yit)}T

t=1.

We write x = [x1, · · · , xT ]ᵀ,μ = [μ(x1), · · · , μ(xT )]ᵀ,C = [c(xm, xn;θ)]T×T ,
then we have yi|x ∼ N (μ,C). Since the dataset is time-aligned, different signals
share the same mean μ and covariance matrix C. Unlike GPFR, we do not
assume μ(x) is a linear combination of B-spline basis functions here. Instead,
we can estimate the global mean function μ(x) non-parametrically. A naive idea
is to estimate μ(xt) by μ̂(xt) = 1

N

∑N
i=1 yit and then interpolate on general x.

Theoretically, yit = yi(xt) = μ(xt) + τ(xt). Once we fix t and integrate out
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yis for s �= t, we immediately obtain yit = μ(xt) + εi where εi is a Gaussian
noise subject to N (0, σ2) and σ2 = c(x, x;θ). Therefore, μ̂(xt) ∼ N (μ(xt), σ2

N ).
This derivation justifies that μ̂(xt) is a good estimator of μ(xt) as long as N
is large enough. For general x �= xt,∀t = 1, · · · , T , we can linear interpolate on
x to obtain the corresponding μ̂(x) based on {(xt, μ̂(xt))}T

t=1. We refer to this
method as Gaussian Processes with Average Mean Functions (GPAVM).

We can extend GPAVM to mixture models and we refer to it as mix-GPAVM.
In mix-GPFR, the number of B-spline basis functions D is the same among all
components. Although there are K components, the smoothness of their mean
functions {μk(x)}K

k=1 is globally controlled by the hyper-parameter D. Therefore,
mix-GPFR cannot effectively model batch datasets with different smoothness
in each component, while mix-GPAVM can adjust the smoothness within each
component separately and adaptively. See Fig. 1 for a concrete example.

Fig. 1. The fitted results of mix-GPFR with different D on a batch dataset with two
components.

3.2 Average Mean Functions Based EM Algorithm

Let Ck = [c(xm, xn;θk)]T×T , μ̂k be the mean function estimated in component
k, and Θ = {θk}K

k=1 ∪ {πk}K
k=1 ∪ {μ̂k}K

k=1 be the parameters to be estimated.
The complete data log-likelihood is given by

log p(D, {zi}N
i=1|Θ) =

N∑

i=1

K∑

k=1

I(zi = k)(log πk + log N (yi|μ̂k,Ck)).

Note that Ck depends on θk. In the E-step, we need to calculate the posterior
distribution of zi, which is p(zi = k|D,Θold) ∝ πkN (yi|μ̂k,Ck). In the E-step,
we update αik = p(zi = k|D, {θold

k }K
k=1), then the Q-function is

Q(Θ|Θold) =Ep(zi=k|D,{θold
k }K

k=1)
[log p(D, {zi}N

i=1|{θk}K
k=1)]

=
N∑

i=1

K∑

k=1

αik(log πk + log N (yi|μ̂k,Ck)).

In the M-step, we need to maximize Q(Θ|Θold) with respect to Θ. For πk and
μ̂k, we can update them explicitly via πk = 1

N

∑N
i=1 αik, μ̂k = 1

N

∑N
i=1 αikyi.
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Table 1. Mean functions and hyper-parameters of Gaussian processes of the synthetic
datasets.

Mean function Hyper-parameters of GPs

θ1 θ2 θ3

x2 0.500 2.000 0.150

(−4(x + 1.5)2 + 9)I(x < 0)

+(4(x − 1.5)2 − 9)I(x ≥ 0)
0.528 2.500 0.144

8 sin(1.5x − 1) 0.556 3.333 0.139

sin(1.5x) + 2x − 5 0.583 5.000 0.133

−0.5x2 + sin(4x) − 2x 0.611 10.000 0.128

−x2 0.639 10.000 0.122

(4(x + 1.5)2 − 9)I(x < 0)

+(−4(x − 1.5)2 + 9)I(x ≥ 0)
0.667 5.000 0.117

5 cos(3x + 2) 0.694 3.333 0.111

cos(1.5x) − 2x + 5 0.722 2.500 0.106

For {θk}K
k=1, we perform gradient ascent on Q(Θ|Θold). The main difference

between mix-GPFR and mix-GPAVM in terms of parameter learning is that
we do not need to perform gradient ascent on coefficients {bk}K

k=1. Estimating
{μ̂k}K

k=1 by a weighted sum is easy and fast, while optimizing {bk}K
k=1 and

{θk}K
k=1 simultaneously is difficult and time-consuming.

3.3 Prediction Strategy

Suppose an (N + 1)-th curve DN+1 = {xt, yN+1,t}T∗
t=1 is given, where T∗ < T

is the signal length. To estimate the response y∗ of (N + 1)-th signal at x∗, we
first calculate the probability that (N +1)-the curve belongs to k-th component,
which is given by

p(zN+1 = k|D,DN+1;Θ) ∝ πkN (yN+1; μ̂k(1 : T∗),Ck(1 : T∗, 1 : T∗)).

Here, (1 : T∗) is the slicing syntax. In k-the component, the prediction is

ŷk = μ̂(x∗) + c∗Ck(1 : T∗, 1 : T∗)−1(yN+1 − μ̂k(1 : T∗)),

where c∗ = [c(x, x1;θk), · · · , c(x, xT∗ ;θk)]ᵀ. The final prediction is the weighted
average of these predictions, i.e., ŷ =

∑K
k=1 p(zN+1 = k|D,DN+1;Θ)ŷk.

4 Experimental Results

4.1 On Synthetic Datasets

Dataset Description. We use the mix-GPFR model with K components to
generate the time-aligned synthetic datasets, with each component consists of 20
curves for training and 10 curves for testing. We have 100 observed samples in
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Table 2. Average RMSEs, CARs and running times (in seconds) with standard devi-
ations of the proposed and competing methods on synthetic datasets.

Method D S3 S5

RMSE CAR Time RMSE CAR Time

GP − 4.6923 ± 0.0000 − 0.39 ± 0.01 4.5716 ± 0.0000 − 0.56 ± 0.01

GPFR 10 4.6147 ± 0.0000 − 0.79 ± 0.01 4.4549 ± 0.0000 − 1.02 ± 0.02

20 4.6074 ± 0.0000 − 0.77 ± 0.01 4.4560 ± 0.0000 − 1.03 ± 0.07

30 4.6051 ± 0.0000 − 0.77 ± 0.01 4.4592 ± 0.0000 − 0.96 ± 0.01

50 4.6150 ± 0.0000 − 0.78 ± 0.02 4.4697 ± 0.0000 − 1.10 ± 0.19

mix-GP − 4.5834 ± 0.0055 − 3.31 ± 0.54 4.1826 ± 0.0206 − 15.35 ± 8.83

mix-GPAVM − 0.4814 ± 0.0000 100.00% ± 0.00% 2.00 ± 0.68 0.6845 ± 0.2736 96.84% ± 8.79% 3.93 ± 0.73

mix-GPFR 10 0.4822 ± 0.0000 100.00% ± 0.00% 2.45 ± 0.40 0.8484 ± 0.4201 93.60% ± 10.84% 8.15 ± 5.46

20 0.4882 ± 0.0000 100.00% ± 0.00% 2.40 ± 0.30 0.9422 ± 0.4311 91.17% ± 11.86% 9.47 ± 5.94

30 0.5876 ± 0.0000 100.00% ± 0.00% 2.43 ± 0.38 0.8003 ± 0.3298 96.03% ± 8.86% 7.27 ± 5.87

50 1.3762 ± 0.0000 100.00% ± 0.00% 2.45 ± 0.37 1.1163 ± 0.1790 96.17% ± 8.72% 6.95 ± 4.11

Method D S7 S9

RMSE CAR Time RMSE CAR Time

GP − 5.3324 ± 0.0000 − 0.78 ± 0.02 4.6994 ± 0.0000 − 1.02 ± 0.19

GPFR 10 5.2751 ± 0.0000 − 1.33 ± 0.21 4.6234 ± 0.0000 − 1.61 ± 0.24

20 5.2786 ± 0.0000 − 1.31 ± 0.28 4.6231 ± 0.0000 − 1.62 ± 0.23

30 5.2768 ± 0.0000 − 2.17 ± 0.94 4.6265 ± 0.0000 − 1.62 ± 0.22

50 5.2786 ± 0.0000 − 1.28 ± 0.06 4.6266 ± 0.0000 − 1.63 ± 0.22

mix-GP − 4.9123 ± 0.0138 − 22.47 ± 11.20 4.3753 ± 0.0087 − 27.04 ± 9.97

mix-GPAVM − 0.7665 ± 0.3102 97.23% ± 6.66% 6.59 ± 0.56 0.9209 ± 0.3142 92.57% ± 7.36% 10.12 ± 1.70

mix-GPFR 10 0.8128 ± 0.3623 96.97% ± 7.09% 14.04 ± 10.41 0.9657 ± 0.3337 93.42% ± 6.56% 29.41 ± 16.96

20 0.8955 ± 0.4237 94.54% ± 8.83% 16.85 ± 12.37 0.9256 ± 0.3403 94.27% ± 6.87% 26.91 ± 22.48

30 1.1095 ± 0.3338 93.29% ± 8.58% 17.14 ± 15.18 1.1776 ± 0.2280 92.55% ± 7.72% 30.28 ± 22.98

50 1.5697 ± 0.1396 94.46% ± 7.81% 14.06 ± 9.13 1.2276 ± 0.2103 92.09% ± 7.51% 33.78 ± 30.71

each curve, randomly positioned in the interval [−3, 3]. For a testing curve, the
first half of the samples are known and the task is to predict the rest points. We
vary the number of components K in {3, 5, 7, 9}, and these datasets are referred
to as S3,S5,S7,S9, respectively. The mean functions and parameters of Gaussian
processes used to generated these datasets are detailed in Table 1, and a dataset
with K components involves the first K rows of Table 1.

Comparison Methods and Parameter Settings. We apply GP, GPFR and
mix-GPFR methods on these synthetic datasets for comparison. For mix-GPFR
and mix-GPAVM, the number of components K is set to be the ground-truth
number of components. For GPFR and mix-GPFR, there is an extra parameter:
the number of B-spline basis functions D. We vary D in {10, 20, 30, 50}. We run
each method 10 times and report the averaged performance metrics.

Evaluation Metrics. We consider the performances of these methods from
two aspects. On the one hand, we concern whether the algorithm can predict
the evolving trend of testing curves, and we evaluate the prediction performances
via Rooted Mean Square Errors (RMSEs). Suppose there are M testing curves
in total, and for the i-th testing curve we need to estimate yi,T/2+1, yi,2, · · · , yi,T ,
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Fig. 2. Ground-truth mean functions (in red) and learned mean functions by mix-
GPAVM (in blue). (Color figure online)

the RMSE is defined as RMSE = 2
MT

∑M
i=1

∑T
t=T/2+1(ŷi,t − yi,t)2. Here, {ŷi,t}

are predictions obtained by the algorithms. On the other hand, we concern
whether the algorithm successfully partition the training time-series into mean-
ingful groups and reveal the underlying cluster structure of the dataset. We use
the Classification Accuracy Rate (CAR) to evaluate the performance of compo-
nent identification, which is defined as CAR = maxξ∈ΠK

1
N

∑N
i=1 I(zi = ξ(ẑi)).

Here, {zi}N
i=1 are ground-truth labels as in Eq. 1 and {ẑi}N

i=1 are cluster labels
assigned by the algorithms. ΠK denotes the set of K-permutations, and the
permutation ξ is employed to account for the label switching problem.

The results are reported in Table 2. We find that a single GP or a single
GPFR is not flexible enough to model these datasets, since in each dataset
the curves are generated by various signal sources. Besides, mix-GP fails to
cluster synthetic datasets into meaningful groups since the global mean function
is ignored. Usually, mix-GPAVM performs better than mix-GPFR in terms of
RMSE and CAR, which demonstrates that mix-GPAVM is effective in curve
prediction and clustering. Furthermore, mix-GPAVM is significantly faster than
mix-GPFR, and it is even faster than mix-GP. The reason is introducing global
mean functions in the model accelerates the convergence of the EM iteration,
and the computational cost of estimating mean functions in mix-GPAVM is
marginal. We also observe that the setting of D influences the results severely.
On S3 and S7, mix-GPFR with D = 10 attains the best results, and increasing
D has a negative effect on the results. However, on S5, the optimal D equals
to 30, while D = 20 leads to the best performances on S9. Therefore, setting a
proper D is very challenging in mix-GPFR, while mix-GPAVM can adjust the
smoothness of mean functions adaptively.

We illustrate the mean functions estimated by mix-GPAVM on S9 in Fig. 2.
We observe that mix-GPAVM successfully learns the mean functions without
obvious over-fitting or under-fitting.
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Fig. 3. RMSEs and running times of mix-GPFR (D = 30) and mix-GPAVM on Elec-
tricity 2009 and Electricity 2010.

4.2 On Real-World Datasets

We use the electricity load dataset issued by the Northwest China Grid Company
in this experiment. The electricity dataset records electricity loads in 2009 and
2010 every 15 min. Therefore, daily electricity loads can be regarded as a time-
series of length 96, and this dataset is naturally time-aligned since the record
times keep the same everyday. We further split the dataset according to the
year, and refer to them as Electricity 2009/2010, respectively. Within each sub-
datasets, we randomly select 200 curves for training and the rest 165 curves for
testing. Since the number of components K is unknown on real-world datasets,
we vary K in {3, 5, 10, 15, 20, 30, 50}. The RMSEs and running times of mix-
GPFR (D = 30) and mix-GPAVM are shown in Fig. 3. On these two real-world
datasets, the performance of mix-GPFR (D = 30) is slightly better than mix-
GPAVM, but mix-GPFR is 2× to 3× slower than mix-GPAVM. Therefore, mix-
GPAVM is able to achieve comparable results as mix-GPFR with a significantly
shorter running time.

5 Conclusion

In this paper, we utilize average mean functions in the EM algorithm and pro-
pose the mixtures of Gaussian processes with average mean functions for time-
aligned batch data. In mix-GPAVM, the mean functions are estimated by sample
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average non-parametrically, and the effectiveness of this estimation is justified
theoretically. Compared with mix-GPFR, mix-GPAVM can adaptively adjust
the smoothness of mean functions. Furthermore, the proposed method is faster
than mix-GPFR since estimating mean functions by sample average is compu-
tationally efficient. Experimental results validate the effectiveness and efficiency
of the proposed method.
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