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Abstract. Gaussian mixture has been widely used for data modeling
and analysis and the EM algorithm is generally employed for its pa-
rameter learning. However, the EM algorithm may be trapped into a
local maximum of the likelihood and even leads to a wrong result if
the number of components is not appropriately set. Recently, the com-
petitive EM (CEM) algorithm for Gaussian mixtures, a new kind of
split-and-merge learning algorithm with certain competitive mechanism
on estimated components of the EM algorithm, has been constructed to
overcome these drawbacks. In this paper, we construct a new CEM algo-
rithm through the Bayesian Ying-Yang (BYY) harmony stop criterion,
instead of the previously used MML criterion. It is demonstrated by the
simulation experiments that our proposed CEM algorithm outperforms
the original one on both model selection and parameter estimation.
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1 Introduction

As a powerful statistical tool, Gaussian mixture has been widely used in the
fields of signal processing and pattern recognition. In fact, there already exist
several statistical methods for the Gaussian mixture modeling, such as the k-
means algorithm [2]) and the Expectation-Maximization (EM) algorithm [3].
However, the EM algorithm cannot determine the correct number of Gaussians
in the mixture for a sample data set because the likelihood to be maximized is
actually a increasing function of the number of Gaussians. Moreover, a “bad”
initialization usually makes it trapped at a local maximum, and sometimes the
EM algorithm converges to the boundary of the parameter space.

Conventionally, the methods of model selection for Gaussian mixture, i.e.,
determining a best number k∗ of Gaussians for a sample data set, are based
on certain selection criteria such as Akaike’s Information Criterion (AIC) [4],
Bayesian Information Criteria (BIC) [5], and Minimum Message Length (MML)
criterion [6]. However, these criteria have certain limitations and often lead to a
wrong result.
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Recently, with the development of the Bayesian Ying-Yang (BYY) harmony
learning system and theory [7,8], there have emerged a new kind of learning algo-
rithms [10,10,11,12] on the Gaussian mixture modeling based on the maximiza-
tion of the harmony function, which is equivalent to the BYY harmony learning
on certain architectures of the BYY learning system related to the Gaussian mix-
ture model. These learning algorithms can automatically determine the number
of Gaussians for the sample data set during parameter learning. Moreover, the
successes of these algorithms also show that the harmony function can be served
as an efficient criterion of model selection on Gaussian mixture.

Although these BYY harmony learning algorithms are quite efficient for the
Gaussian mixture modeling, especially on automated model selection, they need
an assumption that the number k of Gaussians in the mixture should be slightly
larger than the true number k∗ of Gaussians in the sample data. In fact, if k is
smaller or too much larger than k∗, they may converge to a wrong result. On the
other hand, it is still a difficult problem to estimate a reasonable upper bound
of k∗ with a sample data set. One possible way to overcome this difficulty is
to introduce the split-and-merge operation or competitive mechanism into the
EM algorithm to make the model selection dynamically [13]. However, the MML
model selection criterion used in such a competitive EM (CEM) algorithm is not
very efficient for the model selection on Gaussian mixture.

In this paper, we propose a new CEM algorithm which still works in a split-
and-merge mode by using the BYY harmony criterion, i.e., the maximization of
the harmony function, as a stop criterion. The simulation experiments demon-
strate that our proposed CEM algorithm outperforms the original CEM algo-
rithm on both model selection and parameter estimation.

2 The EM Algorithm for Gaussian Mixtures

We consider the following Gaussian mixture model:

p(x|Θk) =
k∑

i=1

αip(x|θi) =
k∑

i=1

αip(x|μi, Σi), (1)

where k is number of components in the mixture, αi(≥ 0) are the mixing propor-
tions of components satisfying

∑k
i=1 αi = 1 and each component density p(x|θi)

is a Gaussian probability density function given by:

p(x|θi) = p(x|μi, Σi) =
1

(2π)
n
2 |Σi|

1
2
e−

1
2 (x−μi)T Σ−1

i (x−μi), (2)

where μi is the mean vector and Σi is the covariance matrix which is assumed
positive definite. For clarity, we let Θk be the collection of all the parameters in
the mixture, i.e., Θk = (θi, · · · , θk, α1, · · · , αk).
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Given a set of N i.i.d. samples, X = {xt}N
t=1, the log-likelihood function for

the Gaussian mixture model is expressed as follows:

log p(X|Θk) = log
N∏

t=1

p(xt|Θk) =
N∑

t=1

log
k∑

i=1

αip(xt|θi), (3)

which can be maximized to get a Maximum Likelihood (ML) estimate of Θk via
the following EM algorithm:

α+
i =

1
n

N∑

t=1

P (i|xt); μ+
i =

N∑

t=1

xtP (i|xt)/
N∑

t=1

P (i|xt) (4)

Σ+
i = [

N∑

t=1

P (i|xt)(xt − μ+
i )(xt − μ+

i )T ]/
N∑

t=1

P (i|xt), (5)

where P (i|xt) = αip(xt|θi)/
∑k

i=1 αip(xt|θi) are the posterior probabilities.
Although the EM algorithm can have some good convergence properties, it

clearly has no ability to determine the appropriate number of the components
for a sample data set because it is based on the maximization of the likelihood
function. In order to overcome this difficulty, we will use the BYY harmony
function instead of the likelihood function for our Gaussian mixture learning.

3 BYY Learning System and Harmony Function

In a BYY learning system, each observation x ∈ X ⊂ Rd and its corresponding
inner representation y ∈ Y ⊂ Rm are described with two types of Bayesian
decomposition: p(x, y) = p(x)p(y|x) and q(x, y) = q(y)q(x|y), which are called
them Yang and Ying machine, respectively. Given a data set Dx = {x1, · · · , xn}
from the Yang or observation space, the task of learning on a BYY system consist
of specifying all the aspect of p(y|x),p(x),q(x|y),q(y) with a harmony learning
principle implemented by maximizing the function:

H(p ‖ q) =
∫

p(y|x)p(x) ln[q(x|y)q(y)]dxdy. (6)

For the Gaussian mixture model, we let y be limited to be an integer variable
y = {1, · · · , k} ⊂ R and utilize the following specific BI-Architecture of the BYY
system:

p(x) = p0(x) =
1
N

N∑

t=1

G(x − xt); p(y = i|x) = αiq(x|θi)/q(x|Θk); (7)

q(x|Θk) =
k∑

i=1

αiq(x|θi); q(y) = q(y = i) = αi > 0;
k∑

i=1

αi = 1, (8)
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where G(·) is a kernel function and q(x|y = i) = q(x|θi) is a Gaussian density
function. In this architecture, q(y) is a free probability function, q(x|y) is a
Gaussian density, and p(y|x) is constructed from q(y) and q(x|y) under the
Bayesian law. Θk={αi, θi}k

i=1 is the collection of the parameters in this BYY
learning system. Obviously p(x|Θk) =

∑k
i=1 αiq(x|θi) is a Gaussian mixture

model under the architecture of the BYY system.
Putting all these component densities into Eq.(6) and letting the kernel func-

tions approach the delta functions, H(p||q) reduces to the following harmony
function:

H(p ‖ q) = J(Θk) =
1
N

N∑

t=1

k∑

i=1

αiq(xt|θi)∑k
j=1 αjq(xt|θj)

ln[αiq(xt|θi)]. (9)

Actually, it has been shown by the experiments and theoretical analysis that
as this harmony function arrives at the global maximum, a number of Gaus-
sians will match the actual Gaussians in the sample data, respectively, with the
mixing proportions of the extra Gaussians attenuating to zero. Therefore, the
maximization of the harmony function can be used as a reasonable criterion for
model selection on Gaussian mixture.

4 The Competitive EM Algorithm with BYY Harmony
Criterion

4.1 The Split and Merge Criteria

In order to overcome the weaknesses of the EM algorithm, we can introduce
certain split-and-merge operation into the EM algorithm such that a competitive
learning mechanism can be implemented on the estimated Gaussians obtained
from the EM algorithm. We begin to introduce the split and merge criteria used
in [13].

In order to do so, we define the local density fi(x; Θk) as a modified empirical
distribution given by:

fi(x; Θk) =
N∑

t=1

δ(x − xt)P (i|xt; Θk)/
N∑

t=1

P (i|xt; Θk), (10)

where δ(·) is the Kronecker function and P (i|xt; Θk) is the posterior probability.
Then, the local Kullback divergence can be used to measure the distance between
the local data density fi(x; Θk) and the estimated density p(x|θi) of the i-th
component in the mixture:

Di(Θk) =
∫

fi(x; Θk) log
fi(x; Θk)
p(x|θi)

dx. (11)

Thus, the split probability of the i-th component is assumed to be proportional
to Di(Θk):

Psplit(i; Θk) = (1/NΘk
) · Di(Θk), (12)

where NΘk
is a regularization factor.



556 H. Wang, L. Li, and J. Ma

On the other hand, if the i-th and j-th components should be merged into
a new component denoted as the i′-th component and the parameters of the
new Gaussian mixture become Θ′

k−1, the merge probability of the i-th and j-th
components is assumed to be inversely proportional to Di′(Θ′

k−1):

Pmerge(i, k; Θk) = (1/NΘk
) · (β/Di′(Θ′

k−1)), (13)

where β is also a regularization factor determined by experience. That is, as the
split probability of the new component merged from the two old components
becomes larger, the merge probability of these two components becomes smaller.

With the above split and merge probabilities, we can construct the following
split and merge criteria.
Merge Criterion: If the i-th and j-th components gave the highest merge
probability, we may merge them with the parameters θl of the new component
or Gaussian as follows ([14]):

αl = αi + αj ; μl = (αiμi + αjμj)/αl; (14)
Σl = {αi[Σi + (μi − μl)(μi − μl)T ] (15)

+αj[Σj + (μj − μl)(μj − μl)T )]}/α. (16)

Split Criterion: If the r-th component has the highest split probability, we can
split it into two components, called the i-th and j-th components. In order to
do so, we get the singular value decomposition of the covariance matrix Σr =
USV T , where S = diag[s1, s2, · · · , sd] is a diagonal matrix with nonnegative
diagonal elements in a descent order, U and V are two (standard) orthogonal
matrices. Then, we set A = U

√
S = Udiag[

√
s1,

√
s2, · · · ,

√
sd] and get the first

column A1 of A. Finally, we have the parameters for the two split components
as follows ([14]):

αi = γαr, αj = (1 − γ)αr; (17)

μi = mr − (αj/αi)1/2μA1, μj = mr + (αi/αj)1/2μA1; (18)
Σi = (αj/αi)Σr + ((η − ηλ2 − 1)(αr/αi) + 1)A1A

T
1 ; (19)

Σj = (αi/αj)Σr + ((ηλ2 − η − λ2)(αr/αj) + 1)A1A
T
1 , (20)

where γ, μ, λ, η are all equal to 0.5. For clarity, we denote the parameters of the
new mixture by Θ′

k+1.

4.2 The Proposed CEM Algorithm

The performance of the CEM algorithm strongly relies on the stop criterion. We
now use the BYY harmony learning criterion as the stop criterion instead of
the MML criterion in [6]. That is, our split-and merge EM learning process tries
to maximize the harmony function J(Θ) given in Eq.(9). Specifically, in each
iteration, if the harmony learning function J(Θk) increases, the split or merge
operation will be accepted, otherwise it will be reject.
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For quick convergence, during each stage of the algorithm, the component with
a mixing proportion αi being less than a threshold ε > 0 will be discarded from
the Gaussian mixture directly. With such a component annihilation mechanism,
the algorithm can escape a lot of computation and converge to the solution more
rapidly.

With all the preparations, we can summarize the CEM algorithm for Gaussian
mixtures with the BYY harmony criterion as follows.

Step 1: Initialization. Select k and set the initial parameters Θk as randomly
as possible. And set l = 0.

Step 2: Implement the (conventional) EM algorithm and get the new parame-
ters as Θk(l) of the Gaussian mixture.

Step 3: Implement the Split and merge operations on the estimated compo-
nents of the Gaussian mixture with Θk(l) and obtain the the new pa-
rameters Θ′

k−1(l) and Θ′
k+1(l) from the merge and split operations,

respectively.
Step 4: Compute Acc(M) = J(Θ′

k−1(l))−J(Θk(l)). If Acc(M) > 0, accept the
merge operation, update the estimated mixture by Θ′

k−1(l), and go to
Step 6. Otherwise, go to Step 5.

Step 5: Compute Acc(S) = J(Θ′
k+1(l)) − J(Θk(l)). If Acc(S) > 0, accept the

split operation, update the estimated mixture by Θ′
k+1(l), and go to

Step 6. Otherwise, stop the algorithm and get the parameters of the
Gaussian mixture.

Step 6: Remove the components whose mixing proportions are lower than the
pre-defined threshold ε > 0. With the remaining parameters and k, let
l = l + 1 and go to Step 2.

Clearly, this proposed CEM algorithm increases the harmony function on each
stage and reach its maximum at end. The maximization of the harmony function
as well as the EM algorithm guarantee the new CEM algorithm can lead to a
good result on both model selection and parameter estimation for the Gaussian
mixture modeling with a sample data set, which will be demonstrated by the
simulation experiments in the next section.

5 Experimental Results

In this section, some simulation experiments were conducted to demonstrate the
performance of the proposed CEM algorithm with BYY harmony criterion. Ac-
tually, the proposed CEM algorithm was implemented on two different synthetic
data sets, each of which contained 3000 samples. Moreover, the proposed CEM
algorithm was compared with the original CEM algorithm.

The first sample data set consisted of seven Guassians. As shown in the left
subfigure of Fig.1, the proposed CEM algorithm was initialized with k = 5 from
the parameters obtained by the k-means algorithm. After some iterations, as
shown in the middle subfigure of Fig.1, one initial component was split into
two Gaussians by the algorithm. Such a split process continued until all the
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Fig. 1. The Experimental Results of the Proposed CEM Algorithm on the First Sample
Data Set

components accurately matched the actual Gaussians in the sample data set, re-
spectively, which is shown in the right subfigure of Fig.1. The algorithm stopped
as J(Θk) reached its maximum and selected the correct number of Gaussians in
the sample data set.

The second sample data set consisted of eight Gaussians. As shown in the
left subfigure of Fig.2, the proposed CEM algorithm was implemented on the
second sample data set initially with k = 12, which was much larger than the
number of actual Gaussians. As shown in the middle subfigure of Fig.2, two pairs
of the initially estimated Gaussians were selected to have been merged into two
new Gaussians. The algorithm finally stopped with the eight actual Gaussians
estimated accurately, being shown in the right subfigure of Fig.2.
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Fig. 2. The Experimental Results of the Proposed CEM Algorithm on the Second
Sample Data Set

For comparison, we also implemented the original CEM algorithm with the
MLL criterion [6] on the second sample data set. From Fig.3, it can be observed
that the original CEM algorithm was initialized at the same situation, but led to
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Fig. 3. The Experimental Results of the Original CEM Algorithm on the Second Sam-
ple Data Set
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a wrong result on both model selection and parameter estimation at last. There-
fore, our proposed CEM algorithm can outperform the original CEM algorithm
on both model selection and parameter estimation in certain cases.

6 Conclusions

We have investigated the competitive EM algorithm from the view of the Bayesian
Ying-Yang (BYY) harmony learning and proposed a new CEM algorithm with the
BYY harmony criterion. The proposed competitive EM algorithm can automat-
ically detect the correct number of Gaussians for a sample data set and obtain a
good estimation of the parameters for the Gaussian mixture modeling through a
series of the split and merge operations on the estimated Gaussians obtained from
the EM algorithm. It is demonstrated well by the simulation experiments that the
proposed CEM algorithm can achieve a better solution for the Gaussian mixture
modeling on both model selection and parameter estimation on a sample data set.
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