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Texture Classification and Retrieval Using Shearlets
and Linear Regression

Yongsheng Dong, Dacheng Tao, Senior Member, IEEE, Xuelong Li, Fellow, IEEE, Jinwen Ma, and Jiexin Pu

Abstract—Statistical modeling of wavelet subbands has fre-
quently been used for image recognition and retrieval. However,
traditional wavelets are unsuitable for use with images contain-
ing distributed discontinuities, such as edges. Shearlets are a
newly developed extension of wavelets that are better suited to
image characterization. Here, we propose novel texture classifica-
tion and retrieval methods that model adjacent shearlet subband
dependences using linear regression. For texture classification,
we use two energy features to represent each shearlet subband
in order to overcome the limitation that subband coefficients are
complex numbers. Linear regression is used to model the features
of adjacent subbands; the regression residuals are then used to
define the distance from a test texture to a texture class. Texture
retrieval consists of two processes: the first is based on statistics
in contourlet domains, while the second is performed using a
pseudo-feedback mechanism based on linear regression model-
ing of shearlet subband dependences. Comprehensive validation
experiments performed on five large texture datasets reveal that
the proposed classification and retrieval methods outperform the
current state-of-the-art.

Index Terms—Contourlets, linear regression, shearlets, sub-
band dependence, texture classification, texture retrieval.

I. INTRODUCTION

TEXTURE represents spatial variations in pixel inten-
sity and orientation and is used in a variety of

Manuscript received November 23, 2013; revised March 3, 2014 and May
15, 2014; accepted May 16, 2014. Date of publication July 11, 2014; date
of current version February 12, 2015. This work was supported in part by
the National Natural Science Foundation of China under Grant 61125106 and
Grant 61301230, in part by China Post-Doctoral Science Foundation under
Grant 2014M550517, in part by the Key Research Program of the Chinese
Academy of Sciences under Grant KGZD-EW-T03, in part by the Key Science
and Technology Research Project of Henan Province’s Education Department
of China under Grant 13B520992, and in part by the Research Fund for the
Doctoral Program of Henan University of Science and Technology of China
under Grant 09001673. This paper was recommended by Associate Editor
Q. Zhao.

Y. Dong is with the Information Engineering College, Henan University
of Science and Technology, Luoyang 471023, China, and also with the
Center for OPTical IMagery Analysis and Learning, State Key Laboratory
of Transient Optics and Photonics, Xi’an Institute of Optics and Precision
Mechanics, Chinese Academy of Sciences, Xi’an 710119, China (e-mail:
dongjunyu@ouc.edu.cn).

J. Pu is with the Information Engineering College, Henan University of
Science and Technology, Luoyang 471023, China.

D. Tao and X. Li are with the Center for OPTical IMagery Analysis and
Learning, State Key Laboratory of Transient Optics and Photonics, Xi’an
Institute of Optics and Precision Mechanics, Chinese Academy of Sciences,
Xi’an 710119, China (e-mail: xuelong_li@opt.ac.cn).

J. Ma is with the Department of Information Science, School of
Mathematical Sciences and LMAM, Peking University, Beijing 100871,
China.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCYB.2014.2326059

image and video analysis applications [1], [2], including
contour detection [3], image retrieval [5], [6], object recog-
nition [7], [10], [12], image segmentation [14], image edit-
ing [11], pedestrian detection [8], gait recognition [9], scene
classification [13], video texture categorization [16], and video
indexing [15]. Texture is generally used to represent a sub-
region of an image, and as a consequence the image as a
whole is considered a mosaic of different texture regions [5].
Texture is also extracted from an image as an important pixel
feature channel [3], [4], and spacetime texture has been used
for video indexing and retrieval [15], [17].

Texture classification and retrieval have therefore become
integral to computer vision and image recognition applications,
and are performed using a variety of methods, including struc-
tural [20], [21], statistical [19], model-based [18], [22], [23],
and multiscale transform-based methods [24]–[36]. Multiscale
transform-based methods have gained particular popularity,
since the multiresolution and orientated representations of the
transforms are consistent with the human perception of images.
The most commonly used multiscale transforms include the
Gabor transform [24], the wavelet transform [25]–[34], the
ridgelet transform [35], and the contourlet transform [36].

When multiscale transform-based methods are used for
texture classification and retrieval, statistical models are usu-
ally used to model subband coefficients in the transformed
domains. The models usually used in the wavelet domains
include the generalized Gaussian density model [30], the
bit-plane probability (BP-P) model [31], the refined his-
togram [34], and the generalized gamma density model [40].
The models used in the contourlet domains include the hid-
den Markov model [36] and the Poisson mixture model [41].
In addition, energy feature-based methods are also used for
texture classification and retrieval [25], [27].

Since the contourlet transform can capture the geometrical
smoothness of the contours and has a better approximation
rate than the wavelet transform [37], [38], it has gained trac-
tion in image processing and recognition, including for image
denoising [36], handwritten numeral recognition [39], texture
classification [40], [41], and texture retrieval [42]. However,
when a contourlet transform is performed on an image, the size
of the resulting contourlet subbands reduces with increasing
decomposition scale. This can result in too few coefficients
in each subband at the coarsest scale to be modeled easily,
and they are statistically unstable for textures from the same
texture class.

As a newly developed 2-D extension of the wavelet trans-
form, the shearlet transform effectively captures the intrinsic
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Fig. 1. Shearlet decomposition of the Lena image. HP1: high-pass subbands at the first scale. DHP1: directional high-pass subbands at the first scale. LP1:
low-pass subband at the first scale. HP2: high-pass subbands at the second scale. DHP2: directional high-pass subbands at the second scale. LP2: low-pass
subband at the second scale. Coefficients with small modulus are colored black while coefficients with large modulus are colored white.

geometric structure key to the interpretation and analysis
of visual information. Moreover, the shearlet expansion can
achieve the optimal approximation rate for piecewise smooth
functions with C2 contours [43], and the size of every shearlet
subband is the same as the initial image, thereby overcoming
a disadvantage of contourlets. However, the coefficients pro-
duced are complex numbers with complicated relationships,
and are therefore inconvenient for computer vision and image
recognition purposes. In order to overcome this limitation, here
we study shearlet subbands and their dependence relationships
using a statistical method.

We propose a novel texture classification and retrieval
method by modeling the dependences of adjacent shearlet
subbands using linear regression. In order to conveniently
model these dependences, we represent each shearlet sub-
band with two extracted energy features. Linear regression
is then used to model the dependences of the energy fea-
tures in adjacent subbands in the same direction, with the
weighted regression residuals used to define the distance from
a test texture to a texture class. Our proposed texture retrieval
method consists of two successive retrieval processes. The first
is implemented using our recently proposed statistical texture
retrieval method in contourlet domains. The second is per-
formed using a pseudo-feedback mechanism based on linear
regression modeling of shearlet subband dependences.

We clearly demonstrate that our texture classification and
retrieval approaches are superior to several current state-of-the-
art methods by comprehensive experimental validation in five
large texture datasets. In particular, four major contributions
are made in this paper. First, we discover the linear depen-
dences of adjacent subbands in the shearlet domain. Second,
we propose a texture classification method based on shearlets
and linear regression models. Third, we propose a pseudo-
feedback mechanism to perform texture retrieval using linear

regression modeling of shearlet subband dependences. Finally,
we propose a preretrieval method for image texture based on
statistics in the contourlet domain.

The remainder of the paper is organized as follows. Section II
introduces the shearlet transform. In Section III, we present
a new texture classification method based on linear regres-
sion modeling of shearlet subband dependences. Section IV
presents our proposed texture retrieval method with a pseudo-
feedback mechanism based on linear regression models. The
experimental results presented in Section V demonstrate the
effectiveness of our proposed texture classification and retrieval
methods. Finally, we briefly conclude in Section VI.

II. SHEARLET TRANSFORM

The shearlet transform was recently developed to overcome
limitations inherent in wavelets. The shearlet representation is
based on a simple but rigorous mathematical framework. This
framework not only provides a more flexible theoretical tool
for the geometrical representation of multidimensional data,
but is also more natural for implementation. In one sense, the
theory of shearlets can be seen as a theoretical justification
for contourlets [43]. Moreover, the shearlet transform can be
implemented using the succession of a Laplacian pyramid and
directional filtering.

Fig. 1 shows an example of the use of the shearlet transform
on the Lena image. For clarity, only two-scale decomposition
is used with six directional subbands at each scale. Note that
for each directional subband, we only show the modulus of
subband coefficients due to directional subband coefficients
being complex numbers. Small moduli are colored black,
while large moduli are colored white. As can clearly be seen
in Fig. 1, the size of each shearlet subband is the same as the
initial image. Moreover, we notice that the shearlet decompo-
sition produces coefficients with large moduli to represent the



360 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 45, NO. 3, MARCH 2015

contour and directional information of the image. It is there-
fore valuable to study how to represent the shearlet subbands
and their relationships in a simple yet effective way.

More recent developments and applications of the shearlet
transform can be found in [44]–[46]. In the next section, we
will study the shearlet subbands and their relationship to linear
regression modeling.

III. TEXTURE CLASSIFICATION BASED ON LINEAR

REGRESSION MODELING THE DEPENDENCE BETWEEN

SHEARLET SUBBANDS

Although the relationships of shearlet coefficients are given
in [43], the resulting coefficients are complex numbers and
their relationships are complicated. This precludes the conve-
nient use of the shearlet transform in image recognition. As an
alternative, here we study their dependences from a statistical
viewpoint, and apply it to texture classification and retrieval.
We first consider how to represent each shearlet subband.

A. Energy Representations of Shearlet Subbands

The total energy of wavelet subbands is usually used to rep-
resent them for texture classification [27]–[29]. In this paper,
and for the purpose of modeling shearlet subband depen-
dences, we consider the use of subband energies to represent
each shearlet subband. In our proposed approach, we employ
two widely-used energy features, namely the norm-1 energy
and the norm-2 energy, to represent each shearlet subband. To
this end, we first perform an L-level shearlet transform on a
given texture, and obtain one low-pass shearlet subband and
M directional subbands at each scale. Then, for each shearlet
subband denoted as S = {zτ }N

τ=1 we denote the modulus of
the coefficient zτ using |zτ |, and define the norm-1 energy and
norm-2 energy features as

e1 = 1

N

N∑

τ=1

|zτ | (1)

and

e2 =
√√√√ 1

N

N∑

τ=1

|zτ |2 (2)

respectively.
In fact, from a statistical viewpoint, the norm-1 energy is

the sample mean of the moduli of coefficients in S, while
the norm-2 energy measures the sample standard deviation. In
this way, these two energy features can be used to capture the
visual information of the shearlet subband S, whether from a
signal energy representation or from a statistical viewpoint.

Furthermore, for any given direction, we can obtain a norm-
1 energy feature vector consisting of the norm-1 energy feature
vector Ej

1 = (e0
1, e1,j

1 , e2,j
1 , . . . , eL,j

1 ), where ei,j
1 denotes the

norm-1 feature in the j-th directional subband at the i-th scale
(j = 1, 2, . . . , M, i = 1, 2, . . . , L); e0

1 denotes the norm-1
feature in the low-pass subband. For clarity, we denote Ej

1
with (e0,j

1 , e1,j
1 , . . . , eL,j

1 ), where e0,j
1 = e0

1 due to the low-pass
subband containing the information for every direction.

Meanwhile, a norm-2 energy feature vector can be con-
structed as Ej

2 = (e0,j
2 , e1,j

2 , . . . , eL,j
2 ) in the same way, where

ei,j
2 denotes the norm-2 feature in the j-th directional sub-

band at the i-th scale; e0,j
2 = e0

2 and e0
2 is the norm-2

feature in the low-pass subband. In this way, 2M feature vec-
tors {E1

1, E2
1, . . . , EM

1 , E1
2, E2

2, . . . , EM
2 } can be obtained. For

simplicity, we denote these feature vectors by

Pt = (p0,t, p1,t, . . . , pL,t) (3)

where t = 1, 2, . . . , 2M. In the next subsection, we study how
to model the dependence of these features.

B. Linear Regression Model of Adjacent Shearlet Subbands

Regression is a tool used for studying the dependence of
attributes. So we can investigate the dependences between
adjacent shearlet subbands for each direction by consider-
ing the dependences of their corresponding features using
a linear regression tool. Consider a given training tex-
ture dataset{Ic,n}Ntr

n=1, where c is the class label with c =
1, 2, . . . , C. When an L-level shearlet transform is performed
on each of Ntr training texture in the c-th class, we can obtain
2M ∗ Ntr feature vectors Qt

c,n = (q0,t
c,n, q1,t

c,n, . . . , qL,t
c,n) with

n = 1, 2, . . . , Ntr and t = 1, 2, . . . , 2M. We next investigated
the dependences between adjacent subbands for each direction
by considering {(qi−1,t

c,n , qi,t
c,n)}Ntr

n=1. For simplicity, we denote

{(qi−1,t
c,n , qi,t

c,n)}Ntr
n=1 by {(xn, yn)}Ntr

n=1, which can obviously be

considered as the points in a 2-D coordinate system. Now, we
model {(xn, yn)}Ntr

n=1 using a linear regression model with one
predictor, which we represent with X, and one response vari-
able, which we denote with Y . Then the samples {(xn, yn)}Ntr

n=1
can be seen as the Ntr observations of (X, Y).

A simple linear regression model consists of the mean
function and the variance function

E(Y|X = x) = β0 + β1x (4)

Var(Y|X = x) = σ 2 (5)

where the parameters in the mean function are the intercept
β0 and the slope β1. The variance function is assumed to be
constant, with a positive value σ 2 that is usually unknown [47].

The parameters β0 and β1 can be estimated by using
ordinary least squares (OLS), and their OLS estimates are
the values that minimize the residual sum of squares (RSS)
function, which is defined as

G(β0, β1) =
Ntr∑

n=1

(yn − β0 − β1xn)
2. (6)

Differentiate G(β0, β1) with respect to β0 and β1, set the
derivatives equal to 0, and then obtain

∂G(β0, β1)

∂β0
= −2

Ntr∑

n=1

(yn − β0 − β1xn) = 0 (7)

∂G(β0, β1)

∂β1
= −2

Ntr∑

n=1

xn(yn − β0 − β1xn) = 0. (8)
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Fig. 2. Four texture classes. (a) D1. (b) D8. (c) D28. (d) D95.

Fig. 3. Feature points obtained from the four texture classes D1, D8, D28, and D95 and the corresponding linear regression models. (a) D1. (b) D8.
(c) D28. (d) D95.

By simply computing, we can obtain the OLS estimates of
β0 and β1 as follows:

β̂0 = ȳ − β̂1x̄, (9)

β̂1 =
∑Ntr

n=1 xnyn − Ntrx̄ȳ
∑Ntr

n=1 x2
n − Ntrx̄2

(10)

where x̄ = 1
Ntr

∑Ntr
n=1 xn, and ȳ = 1

Ntr

∑Ntr
n=1 yn.

We can obtain the regression coefficients in all the regres-
sion models used for modeling the dependences of all adjacent
subband features in the same way as above. For clarity, Fig. 2
shows four Brodatz texture images D1, D8, D28, and D95,
obtained from the Brodatz database [48] and used to repre-
sent four texture classes. We divide these four images into
16 texture patches, from which 13 patches are used as train-
ing samples and the others as test samples. For the purpose
of modeling the dependences of shearlet subbands, we first
perform a three-level shearlet decomposition with 10 direc-
tional subbands at each scale on each image patch. It should
be obvious that C = 4, Ntr = 13, M = 10, and L = 3. We
then construct the training feature vectors Qt

c,n, and the test
feature vectors (denoted by Q̃t

c,n = (q̃0,t
c,n, q̃1,t

c,n, . . . , q̃L,t
c,n)), of

the c-th texture class.

In order to explain the linear regression models of adja-
cent shearlet subbands, Fig. 3(a) shows the 13 training fea-

ture points {(qi−1,t
c,n , qi,t

c,n)}13
n=1 and three test feature points

{(q̃i−1,t
c,n , q̃i,t

c,n)}3
n=1 (c = 1, i = 3, and t = 9), where c = 1

denotes the texture class D1. Note that the 13 training feature
points are marked by blue circles and the three test feature
points by red circles. In addition, Fig. 3(a) also shows a regres-
sion straight line obtained from the training samples. Similarly,
Fig. 3(b)–(d) shows the training and test feature points of
D8, D28, and D95, as well as the corresponding regression
straight lines. As we can see, for each texture class its test
feature points almost follow the same linear regression rela-
tionship as its training feature points although there are two
outliers for the D1 class. Fig. 4 shows the relations of the
four regression straight lines in a common coordinate sys-
tem. It can be seen from Fig. 4 that the test feature points
of D8 are closer to the regression straight line obtained from
the training feature points of D8, rather than the other three
lines. Similar results can be observed for the texture class
D28. Although the two texture classes D1 and D95 are very
similar and almost homogeneous, only a small proportion of
sample points of each class are far away from the regres-
sion line of the class to which they belong. Therefore, it is
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Fig. 4. Relations of the four linear regression straight lines corresponding
to the four texture classes D1, D8, D28, and D95.

reasonable to utilize the linear regression approach to model
the dependences of the adjacent shearlet subbands for texture
classification.

In the next subsection, the distance from a test texture to
all texture classes will be given.

C. Residual Analysis and Similarity Measurement

Once all the regression coefficients in the linear regres-
sion models are obtained for every texture, the response
value of a test feature point with its estimated value obtained
from the regression model can be compared using a met-
ric. Given a test image I we can obtain 2M feature vectors
{(p0,t, p1,t, . . . , pL,t)}2M

t=1 by means of the above feature extrac-
tion method. To define a distance from the test image I to the
c-th texture class Tc, we consider the i-th pair of adjacent
features (pi−1,t, pi,t) of the t-th vector and further utilize the
corresponding regression coefficients {β̂c,i,t

0 , β̂
c,i,t
1 } of the c-th

class to compute the residual di,t
c

di,t
c = ∣∣pi,t − p̂i,t

∣∣ (11)

where

p̂i,t = E(Y|X = pi−1,t) = β̂
c,i,t
0 + β̂

c,i,t
1 pi−1,t (12)

and i = 1, 2, . . . , L. It follows that we can define the weighted
summation of residuals (WSR) as the distance from the test
image I to the c-th class Tc, which is given by:

DWSR(I, Tc) =
2M∑

t=1

L∑

i=1

2idi,t
c . (13)

Note that the weight 2i depends on the shearlet decomposition
scale index i and is used for balancing the energy differ-
ences of shearlet subbands at different scales. After all the
distances {DWSR(I, Tc)}C

c=1 between the test sample and the C
texture classes are computed by formula (13), the test sample
is assigned to the texture class corresponding to the minimum
of {DWSR(I, Tc)}C

c=1.
Except for the scatterplots in Figs. 3 and 4, we fur-

ther explain the rationality of this linear regression modeling
assumption from the view of the similarity measurement
defined by regression residuals. Instead of the four textures

Fig. 5. Forty Brodatz texture images. From left to right and top to bottom:
D1, D3, D4, D6, D8, D9, D10, D11, D15, D17, D18, D20, D21, D22, D25,
D28, D33, D34, D37, D46, D49, D52, D56, D64, D66, D68, D75, D79, D82,
D87, D94, D95, D101, D102, D103, D104, D106, D109, D110, and D111.

used in the previous subsection, we here use a large set of 40
640 × 640 texture images (shown in Fig. 5) from the Brodatz
database [48]. In this experiment, each image is divided into
16 160 × 160 nonoverlapping patches. We select eight train-
ing samples from each of 40 classes and leave the remaining
samples for testing. In the interest of saving space, we only
investigate the similarity measurements from the texture sam-
ples of the D1 and D3 classes to the 40 texture classes, which
are given in Tables I and II. Table I shows the values of the
similarity measure DWSR(I, Tc) from the texture samples of the
D1 class to all the 40 texture classes. It can be seen clearly
that the distance from each sample of the D1 class to the D1
class is minimum among the distances from it to each of 40
texture classes. Furthermore, it is obvious that the average dis-
tance from training samples of D1 to the D1 class is less than
that from testing samples of D1 to the D1 class. The similar
results can be observed in Table II, which shows the values of
the similarity measure DWSR(I, Tc) from the texture samples of
the D3 class to all the 40 texture classes. These provide a suf-
ficient verification for the rationality of this linear regression
modeling assumption.

IV. TEXTURE RETRIEVAL BASED ON LINEAR REGRESSION

MODELING

Given a query texture and a dataset � consisting of Ntotal
texture images from C texture classes, texture retrieval is
used to pick out the relevant textures from the dataset �.
In this section, we present a novel texture retrieval method
with pseudo-feedback based on linear regression models of
adjacent shearlet subband dependences. We first describe the
framework of this texture retrieval method and then present a
preretrieval approach based on contourlets.

A. Texture Retrieval With Pseudo-Feedback Based on
Linear Regression Models

To perform texture retrieval with pseudo feedback, we need
a texture retrieval method to preprocess the textures in �.
In fact, any distance-based texture retrieval method can be
used as the preprocessing step of our proposed texture retrieval
method. Here, we assume that a preretrieval method has been
performed on the dataset �. We then pick out a subset �1
(�1 ⊆ �) consisting of Ntop (Ntop ≤ Ntotal) top-ranked tex-
tures. Generally speaking, the subset �1 includes all relevant
textures with the query texture; it is true that in the extreme
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TABLE I
VALUES OF THE SIMILARITY MEASURE DWSR(I, Tc) (×102) FROM THE 16 TEXTURE PATCHES OF THE D1 CLASS TO ALL THE 40 TEXTURE CLASSES

TABLE II
VALUES OF THE SIMILARITY MEASURE DWSR(I, Tc) (×102) FROM THE 16 TEXTURE PATCHES OF THE D3 CLASS TO ALL THE 40 TEXTURE CLASSES

case �1 = �, and we only select �1 (�1 ⊂ �) for the pur-
pose of reducing the computational cost of texture retrieval.
Note that for any given query texture the number of relevant
textures in the dataset � is a fixed number, albeit previously
unknown. For clarity, we denote the number of relevant tex-
tures in the dataset � by Nrel. So, the range of Ntop should be
Nrel < Ntop ≤ Ntotal.

In this way, the original texture retrieval problem is reduced
to a simpler one retrieving Nrel relevant textures from �1 con-
sisting of Ntop textures. To this end, we need to perform a
shearlet transform to each texture in �1 and extract the energy
features to represent the shearlet subband. We then select Nreg
(2 ≤ Nreg ≤ Nrel) texture images from �1 to construct lin-
ear regression models using their energy features and estimate
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TABLE III
PROCEDURE OF OUR PROPOSED TEXTURE RETRIEVAL METHOD USING

THE PSEUDO-FEEDBACK MECHANISM BASED ON LINEAR REGRESSION

the model parameters. Note that we let Nreg = [Nrel/2] in
our experiments. In fact, if too few samples (e.g., Nreg = 2)
are selected for constructing linear regression straight lines,
the resulting lines may be far away from the true regression
lines of all the relevant samples. In contrast, if too many sam-
ples (e.g., Nreg = Nrel − 1) are selected as relevant samples
for constructing linear regression straight lines, the number
of the remaining relevant samples in �1 is too small, and
thus the pseudo-feedback will have almost no effect on the
retrieval result obtained by the preretrieval method. When we
compute the distances from each of the remaining Ntop − Nreg
textures to the class in which the query texture belongs, we
can obtain the Nrel − Nreg top-ranked textures according to
these distances. Finally, we can obtain the Nrel retrieved tex-
tures consisting of the Nrel − Nreg top ranked textures and
the previously assumed relevant Nreg textures with the query.
Table III shows the procedure of our proposed texture retrieval
method using the pseudo-feedback mechanism based on linear
regression.

Note that the rationale for performing the second retrieval is
as follows. Consider that, for the queried images using the first
retrieval, the top-ranked images are more similar to the query
image than the other images, and thus the Nreg top-ranked
images in the queried images are regarded as images with the
same class label as the query. Therefore, the retrieval problem
can be considered as a two-class classification, that is, the tex-
tures whose energy features are close to the linear regression
straight lines belong to the class that the query belongs to, and
the others belong to another class. We can therefore adjust the
first retrieval result by using the pseudo-feedback mechanism
based on the linear regression models.

B. Preretrieval Based on Statistical Contourlet Subband
Characterization

In this subsection, we present a contourlet-based texture
retrieval method for preretrieval. For the details of this method,
see Reference [42].

1) Statistical Contourlet Subband Characterization: In this
contourlet-based texture retrieval approach, we use six statis-
tics to describe the probability density function [pdf , denoted
by g(x)] of the coefficients in each contourlet subband.
In particular, for the j-th directional subband at the i-th
scale (j = 1, 2, . . . , Mcon, i = 1, 2, . . . , Lcon)1 we let

ω̄Ni,j = 1
Ni,j

∑Ni,j
τ=1 ωτ , and Sl

Ni,j
= 1

Ni,j

∑Ni,j
τ=1 (ωτ − ω̄Ni,j)

l,

l = 2, . . . , 4, ωτ ∈ Vi,j, Vi,j is the set consisting of the absolute
coefficients in the j-th directional subband at the i-th scale, and
Ni,j is the number of coefficients in Vi,j. The six statistics are
then given as follows.

1) Sample mean (one-order origin moment): f i,j
1 = ω̄Ni,j .

2) Median (one-order): f i,j
2 = 1

2

(
ω̃Ni,j

2
+ ω̃Ni,j

2 +1

)
if Ni,j is

even, = ω̃Ni,j+1
2

otherwise, where ω̃n is the n-th order

statistic from the sample Vi,j.
3) Sample variance (two-order central moment): f i,j

3 = S2
Ni,j

.

4) Norm-2 energy (two-order origin moment): f i,j
4 =

1
Ni,j

∑Ni,j
τ=1 ω2

τ .

5) Absolute skewness: f i,j
5 =

∣∣∣∣
S3

Ni,j

(S2
Ni,j

)3/2

∣∣∣∣.

6) Kurtosis: f i,j
6 = S4

Ni,j

(S2
Ni,j

)2 .

Note that the absolute skewness measures the lack of sym-
metry in the pdf g(x), while the kurtosis measures the flatness
of the pdf g(x). For the low-pass subband, these six statis-
tics can be computed in the same manner as above, and are
denoted by f 0

k with k = 1, 2, . . . , 6.
Considering the j-th directional information of one texture,

we find that the low-pass subband contains some informa-
tion about the j-th direction of one texture, in addition to the
j-th directional subbands at different scales. We therefore con-
struct the following six directional feature vectors (DFVs) to
represent the j-th directional information of the texture:

Fj
k =

(
f 0,j
k , f 1,j

k , . . . , f Lcon,j
k

)
(14)

where f 0,j
k = f 0

k , j = 1, 2, . . . , Mcon and k = 1, 2, . . . , 6. That
is, Fj

k represents the DFV that consists of the k-th statistics
from the j-th directional suband at all the Lcon scales, as well as
the low-pass subband. In this way, a texture can be character-
ized by these 6Mcon DFVs, and we can distinguish two textures
from their DFVs according to some discrepancy measurement.

2) Discrepancy Measurement and Texture Retrieval: After
all DFVs are obtained for a query image and every texture
image in a given dataset, retrieval requires that DFVs are
compared to measure the distance between the query image
and every candidate texture image. Since the six DFVs in
each contourlet subband each have their own metric units,
in order to make a uniform measure for them we employ a
Relative − L1 (RL1) distance as our discrepancy metric of two
DFVs Fj

k and F̃j
k. Specifically, the RL1 distance is a weighted

1To differentiate from the number M of directional subbands and the num-
ber L of decomposition scales in the shearlet transform, we use Mcon and
Lcon as the corresponding values in the contourlet transform.
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Fig. 6. Average classification accuracy rates of our proposed method
with respect to the number of training samples in the four cases of the
decomposition scale number.

L1 distance and expressed as follows:

RL1(F
j
k, F̃j

k) =
Lcon∑

i=0

∣∣∣f i,j
k − f̃ i,j

k

∣∣∣

1 + f i,j
k + f̃ i,j

k

(15)

where Fj
k = (f 0,j

k , f 1,j
k , . . . , f Lcon,j

k ) and F̃j
k =

(f̃ 0,j
k , f̃ 1,j

k , . . . , f̃ Lcon,j
k ).

For two given texture images I1 and I2, we can obtain one
low-pass subband and Mcon-directional subbands at each scale
after having implemented an Lcon-level contourlet transform
on them, and then define the distance between the two texture
images by the summation of RL1s (abbreviated as SRL)

DSRL(I1, I2) =
6∑

k=1

Mcon∑

j=1

RL1

(
Fj

k, F̃j
k

)
(16)

where Fj
k and F̃j

k are the k-th DFVs representing the j-th
directional information of the two images I1 and I2, respectively.

In this way, the distances between the query image and every
candidate image can be computed by DSRL. We can then sort
these distances in increasing order and pick out the set of closest
images to the first retrieval result, which is followed by the second
retrieval using the pseudo-feedback mechanism based on linear
regression as proposed in the previous subsection.

V. EXPERIMENT RESULTS

Here, we perform various experiments to demonstrate the
efficiency of our proposed texture classification and retrieval
methods. For these experiments, we select the Laplacian pyra-
mid filter by the 9–7 filters in the shearlet transform, which are
the biorthogonal wavelet filters. In addition, we impose that
each image is decomposed into one low-pass subband and 10
directional subbands at each scale. It therefore follows that
M = 10.

A. Texture Classification

For clarity, we refer to our proposed texture classifica-
tion method based on linear regression modeling of shearlet

subband dependences and the minimum distance classifier as
LRS-MD.

1) Classification Performance Evaluation: In this subsec-
tion, we evaluate our method of texture classification on the
typical set of 40 640 × 640 Brodatz texture images shown in
Fig. 5 (denoted by Set-1). In this experiment, each image is
divided into 16 160 × 160 nonoverlapping patches, and thus
there are 640 samples available in total. We select Ntr train-
ing samples from each of 40 classes and leave the remaining
samples for testing with Ntr = 3, 4, . . . , 15. Furthermore, the
partitions are randomly obtained and the average classifica-
tion accuracy rate (ACAR) is computed over the experiment
results using 10 random splits of the training and test sets. In
the following experiments, the ACAR is always defined in the
same way.

We first investigate the sensitivity of decomposition scale to
classification performance. Fig. 6 shows the ACAR of LRS-
MD with respect to the number of training samples. It can
be seen that the ACARs of LRS-MD with any given decom-
position scale increase almost monotonically with the number
of training samples. The ACARs of LRS-MD with L = 3
outperforms those with L = 1, 2, and 4. The error bars are
also plotted in Fig. 6, where each error bar represents the
standard deviation of the ACAR. The average of error bars
of LRS-MD with L = 3 are notably smaller than those with
L = 1, 2, and 4. This implies that the optimal number L of
decomposition scales should be 3.

We further evaluate our proposed method by comparing
it with three recently developed methods. The first method
is based on the BP-P model and minimum distance classi-
fier (BP-MD), proposed in [31]. The second is the method
using the c-means clustering in the contourlet domain and the
K-nearest neighbor (KNN) classifier (MCC-KNN), proposed
in [40]. The third is the method based on the Poisson mix-
tures in the contourlet domains and the Bayesian classifier
(PMC-BC), proposed in [41]. The second column of Table IV
reports the ACARs of the four texture classification methods
performed on Set-1 in the case of eight training samples. As
seen in the second column, the ACAR of our proposed LRS-
MD is higher than the other three methods by over 1.66%,
and its standard deviation is visibly less than the other three
methods.

2) Comparison Using Larger Brodatz Datasets: To further
demonstrate the efficiency of LRS-MD, we use two larger
Brodatz texture datasets and compare LRS-MD with the three
texture classification methods presented above. The first large
dataset consists of 60 Brodatz texture images, denoted by
Set-2.2 The second large data set is the whole Brodatz tex-
ture dataset, consisting of 111 texture images, and denoted by
Set-3. All the texture images in these two datasets are of size
640 × 640, and each is divided into 16 160 × 160 nonoverlap-
ping patches. Thus, there are 960 and 1776 samples available
in total, respectively. Eight texture patches in each class are
selected for training, and the other patches in each class are
used for testing. The ACARs of these methods are listed in

2 Set-2 (60 Classes) consisting of the 40 classes in Set-1 and the following
20 classes: D5, D16, D19, D26, D29, D32, D35, D47, D48, D53, D55, D57,
D65, D67, D74, D76, D77, D80, D93, and D112.
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TABLE IV
AVERAGE CLASSIFICATION ACCURACY RATES (ACARS, %) OF BP-MD, MCC-KNN, PMC-BC, AND LRS-MD ON THE FIVE DATASETS

IN THE CASE OF EIGHT-TRAINING SAMPLES

Fig. 7. Forty VisTex texture images.

Fig. 8. Fifty VisTex texture images.

Table IV. It can be seen that LRS-MD outperforms BP-MD,
MCC-KNN, and PMC-BC by over 1.12% on these two large
Brodatz datasets.

3) Comparison Using VisTex Datasets: In this subsection,
we further compare our method with BP-MD, MCC-KNN, and
PMC-BC using two datasets from the VisTex database [49].
The first is the dataset consisting of 40 512 × 512 VisTex
texture images (denoted by Set-4, and shown in Fig. 7).
The second consists of 50 VisTex texture images (denoted
by Set-5, and shown in Fig. 8). Each image is divided
into 16 128 × 128 nonoverlapping patches, and thus there
are 640 and 800 samples available in total, respectively.
Eight texture patches in each class are selected for train-
ing, and the other patches in each class are used for test-
ing. The ACARs of these methods are listed in Table IV.
It can be seen that LRS-MD outperforms BP-MD, MCC-
KNN, and PMC-MD by over 5.13% on these two VisTex
datasets.

For a more intensive comparison with BP-MD, MCC-KNN,
and PMC-MD, the classification accuracy rates of all 50
texture classes in Set-5 are shown in Table V. It can be
seen that our method does not perform worse than the other
three methods for 39 texture classes. Our method delivers
100% classification accuracy rate for 24 texture classes, com-
pared to a maximum of 11 texture classes recognized without
error by the other methods. The worst classification accuracy

rates of the four methods, BP-MD, MCC-KNN, PMC-MD,
and LRS-MD, are 16.25%, 15.00%, 31.25%, and 42.50%,
respectively.

In summary, our proposed LRS-MD is efficient for perform-
ing texture classification and outperforms three state-of-the-
art texture classification methods (BP-MD, MCC-KNN, and
PMC-MD).

B. Texture Retrieval

For our texture retrieval experiments, the parameters used in
the first texture retrieval based on statistical contourlet subband
characterization are the same as the parameters given in [42].

1) Retrieval Performance Evaluation and Comparison: We
first evaluate the efficiency of our proposed texture retrieval
method on Set-1, consisting of 40 gray 640 × 640 images.
In this experiment, each image is divided into 16 160 × 160
nonoverlapping patches, and thus there are 640 samples avail-
able in total. Any patch is selected as a query sample from each
of the 40 classes, and the relevant samples for every query are
defined as the other 15 samples from the same texture image;
therefore, Nrel = 15. The retrieval performance is evaluated by
the average retrieval rate (ARR), which is defined as the aver-
age percentage of number of relevant samples in the top 15
retrieved samples. In the following experiments, the relevant
samples for every query and the ARR are defined in the same
manner.

For the parameter Ntop in the second retrieval phase, we
let Ntop ∈ [3Nrel, 4Nrel]. While we also consider other values
of Ntop, the experiment results reveal that the values of Ntop
in this interval are satisfactory. For example, the ARR of our
proposed retrieval method on Set-1 is 96.27% in the case of
Ntop = 3Nrel + Nreg = 3Nrel + [Nrel/2] = 52. Although the
ARR is 97.01% in the extreme case of Ntop = Ntotal = 600,
the computational cost of this case is nearly 10 times greater
than that of the former in the second retrieval phase.

Next, we compare our proposed texture retrieval method
with three current state-of-the-art texture retrieval approaches.
The first one is the method based on the BP probability (BP-P;
referred to as BPP), which was proposed in [33] and further
improved on in [31]. The second is the method using the local
energy histograms (LEH) [50]. The third retrieval method is
based on statistics in the contourlet subbands (SCS) [42]. For
clarity, we refer to the proposed retrieval method based on
SCS and LRS-MD as SCS + LRS-MD. Table VI reports the
ARRs of BPP, LEH, SCS, and our proposed SCS + LRS-MD.
As can be seen from Table VI, SCS + LRS-MD outperforms
BPP, LEH, and SCS by over 3.11%.
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TABLE V
AVERAGE CLASSIFICATION ACCURACY RATE (ACAR, %) FOR EACH OF 50 TEXTURE CLASSES IN SET-5 WITH THE FOUR METHODS:

COLUMN 1: BP-MD, COLUMN 2: MCC-KNN, COLUMN 3: PMC-BC, COLUMN 4: OUR PROPOSED LRS-MD

Fig. 9. Average retrieval rates (ARRs, %) of BPP, LEH, SCS, and our proposed SCS + LRS-MD for individual texture class of Set-1.

For an intensive comparison with BPP, LEH, and SCS,
in Fig. 9 we summarize the retrieval rates of BPP, LEH,
SCS, and our proposed SCS + LRS-MD for individual texture
classes. We observe that SCS + LRS-MD either has equivalent
ARRs or outperforms the other three methods for 37 texture
classes, among which 25 texture classes can be retrieved by
SCS + LRS-MD without error. Significantly, the retrieval rate
of SCS + LRS-MD is equal to or greater than the retrieval rate
of SCS for 39 texture classes, which verifies that our proposed
pseudo-feedback mechanism based on linear regression mod-
eling of dependences between shearlet subbands is effective.
The minimum ARRs for the four methods (BPP, LEH, SCS,
and our proposed SCS + LRS-MD) over all 40 classes are
achieved on D52 (47.92%), D2 (55.00%), D2(67.08%), and
D52 (69.58%), respectively. In other words, SCS + LRS-MD
significantly outperforms these three methods on this dataset.

2) Further Comparison on Other Datasets: In this sub-
section, we demonstrate the use of SCS + LRS-MD on four
other datasets (Set-2, Set-3, Set-4, and Set-5) and further
compare with BPP, LEH, and SCS. Each texture in these
four datasets is divided into 16 nonoverlapping patches in
the same way as in the texture classification experiments.
For each dataset, the query texture is selected in the same
way as in the above subsection. Table VI reports the ARRs
of BPP, LEH, SCS, and SCS + LRS-MD. As can be seen,
SCS + LRS-MD outperforms the other three methods by
over 3%.

To provide additional justification for the use of SCS +
LRS-MD, we also compare it with the current state-of-the-
art texture retrieval method based on the generalized gamma
density (referred to as GD) method proposed in [51]. For con-
venience of comparison, we use the same dataset (Set-4) with
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TABLE VI
AVERAGE RETRIEVAL RATES (ARRS, %) OF BPP, LEH, SCS, AND OUR PROPOSED SCS + LRS-MD ON THE FIVE TEXTURE DATASETS

the same experimental setting as in [51]. The ARR of SCS +
LRS-MD is 86.18%, which is obviously higher than that of
GD, reported as 78.40% in [51].

In summary, our proposed SCS + LRS-MD outperforms
four recently developed texture retrieval methods in five large
datasets.

VI. CONCLUSION

Here, we present novel texture classification and retrieval
methods in which shearlet subband dependences are modeled
using linear regression. In order to overcome the inherent
complexity of shearlet coefficients, we extract energy fea-
tures from shearlet subbands and model their dependences
using linear regression. The regression residuals are used
for defining the distance from a test texture to a texture
class. Our proposed texture retrieval method uses pseudo-
feedback based on linear regression modeling to modify
the retrieval result. Comprehensive experimentation in five
large texture datasets reveals that our proposed classification
and retrieval methods convincingly outperform the current
state-of-the-art.
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