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ABSTRACT In the modern era of Internet, mobile and digital information technology, image retrieval
for object identification, just as wine label retrieval from a wine bottle image, has become an important
and urgent problem in artificial intelligence. In comparison with the general image retrieval, it is rather
challenging because there are a huge number of object identification or brand images which are very similar
and difficult to discriminate, and the number of different brand images in the given dataset changes greatly,
that is, the samples are strongly unbalanced for these brands. In this paper, we propose a CNN-SURF
Consecutive Filtering and Matching (CSCFM) framework for this kind of image retrieval, specifically
focalizing on wine label retrieval. In particular, Convolutional Neural Network (CNN) is utilized to filter out
the impossible main-brands (manufacturers) for narrowing down the range of retrieval and the Speeded Up
Robust Features (SURF) matching is improved by adopting the RANdom SAmple Consensus (RANSAC)
mechanism and the modified Term Frequency–Inverse Document Frequency (TF-IDF) distance for the
accurate retrieval of the sub-brand (item attribute under the manufacture). The experiments are conducted on
a dataset containing approximately 548k images of wine labels with 17, 328 main-brands and 260, 579 sub-
brands. It is demonstrated by the experimental results that our proposed method can solve the wine label
retrieval problem effectively and efficiently. Moreover, our proposed method is further evaluated on two
pubic benchmarks of the object identification image retrieval tasks, OxfordBuildings Benchmark (Oxford5k)
and the University of Kentucky of Indoor Things Benchmark (UKB), and achieves 88.3% mean average
precision and 3.92 N-S score in Oxford5k and UKB, respectively.

INDEX TERMS Image retrieval, object identification, wine label retrieval, CNN, SURF descriptor, filter
out the impossible main-brands.

I. INTRODUCTION
Image retrieval has been one of classical research fields in
computer vision and image processing. Nowadays, with the
development of information technology and database, Image
retrieval technology has brought great convenience to our
work and life. Face retrieval [1] can help polices and other
security personnels catch suspects more quickly. In online
shopping, commodity images retrieval [2] can help customers
find their favorite commodities. Building retrieval [3] from
the map can help people locate themselves more accurately
and reduce the possibility of getting lost. Clothes retrieval [4]
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can help buyers find out the clothes they want. Bird retrieval
[5] can help people know the type of the bird and learn more
about the nature. In fact. this is essentially a problem of
object identification through image retrieval. That is, there is
a database of the images which contains the same or similar
objects with different categories or identities and we need
to detect or recognize the object identity containing in each
image. With the development of Internet, mobile and digital
information technology, the image retrieval for object identi-
fication becomes an important and urgent problem in artificial
intelligence. However, in many practical applications, it is
rather challenging because there are a huge number of images
which are very similar and difficult to discriminate, and the
samples are strongly unbalanced for these categories.
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We investigate the object identification image retrieval
from a specific task: wine label retrieval. In our daily life,
wine is one of the most widely consumed beverages in
the world and thus automatic wine label retrieval becomes
very important and popular. In a wine label retrieval sys-
tem, as a user inputs a wine label image taken by a mobile
phone or camera, the retrieval result can help the user get the
wine brand and other related information he would like to
know. In this way, it helps the user to recognize and learn
about the wine more easily. However, there are hundreds of
thousands of red wines in the world and we cannot set up a
complete database of all the standard wine label images. So,
the wine label retrieval system begins from a small database
of wine label images and collects more samples of wine
label images from the customers step by step. After a long
time accumulation, we can have a large database with a huge
number of wine label images, which are generally distributed
unbalancedly on the wine labels. Our main task is to establish
an effective and efficient wine label retrieval system for such
a database.

We then turn to the existing methods of image retrieval.
In fact, they have been developed into twomain streams: con-
ventional and Convolutional Neural Network (CNN) based
methods. Conventional image retrievals are based on an
aggregation of conventional image features by the meth-
ods such as Bag of Words (BOW) [6], Vector of Locally
Aggregated Descriptors (VLAD) [7] and Fisher Vector [8].
In fact, the color, shape, texture, and Scale-Invariant Feature
Transform (SIFT) [9] features are all typical conventional
features. Following the increased interest of deep neural net-
works, CNN based image retrieval approaches become active
in recent years. These approaches can reduce the seman-
tic gap in the task of image retrieval in comparison with
conventional retrieval methods. Their features are extracted
from fully connected layers [10] or convolutional layers
[11], and then employed to match with the methods such
as SVM or softmax regression. In addition to extracting
features from the whole image, CNN models also extract
the features from local regions of the image. For example,
Regional Maximum Activation of Convolutions (RMAC)
[12] and Multiscale Regional Maximum Activation of Con-
volutions (MS-RMAC) [13] are classical image retrieval
approaches. Thosemethodsmay be effective in general image
retrieval problems, but they are not feasible for wine label
retrieval because there are three major challenges on wine
label datasets. Firstly, there is a huge number of wine label
images with large numbers of main-brands and sub-brands,
which makes the retrieval task more complicated. If we apply
a conventional method to solve wine label retrieval, both
time and space costs will be high. Secondly, the numbers
of samples for different brands are quite different, and the
numbers of samples for different sub-brands are also quite
different, with certain brands having only one sample.We can
see the real case from Table 4 in our experiment. This
inter-class unbalance can lead to poor performance even if
CNN based methods are used for this task. Thirdly, there is

FIGURE 1. Some examples of the same wine label brand. (a) and (b) are
two pairs of examples with the same main-brand and the same
sub-brand, respectively, but the images in (b) have a more significant
difference than those in (a).

FIGURE 2. Some examples of different wine label brands. (a) and (b) are
two pairs of examples with different main-brands and different
sub-brands, but the images in (b) have a more slight difference than
those in (a).

even a significant difference among some wine label images
of the same sub-brand, while there is a slight difference
among some wine label images of different brands, as shown
in Figure1 and Figure2, which will make the retrieval more
difficult.

As for wine label retrieval, one naive way is to get the wine
label region by using the edge-based method, and then imple-
ment fuzzy c-means clustering on its individual wine letters
to recognize the text [14]. While this system can achieve a
high recognition accuracy in some special wine label images,
it has some obvious disadvantages. First of all, it works
well only if the text on the wine label is English. However,
there always exist some texts on the wine labels that are not
English. Then, it is well known that the letter recognition in
this system relies heavily on the detection of candidate text
region. If the fonts of letters are standard inwine label images,
the detection performs well, so does the retrieval. Clearly,
the realistic situation is that the fonts in wine label images are
usually changeable which can lead to poor detection. Another
available way is to use a hierarchical feature and a client-sever
searching architecture proposed by Wu et al. [15]. In fact,
it was built by the Speeded Up Robust Features (SURF)
descriptors [16], K-D tree and k-means method. Although it
can maintain a high recognition accuracy, its retrieval time
cost for each image will increase greatly on a large database.

In order to overcome these difficulties, we recently pro-
posed the framework of CNN-SIFT Consecutive Searching
and Matching (CSCSM) [17] for the task of wine label
retrieval with a large database. It is a two-phase system with
consecutive searching and matching. In this paper, we fur-
ther extend our previous study of the CSCSM framework
methodologically and theoretically. Specifically, we design
the framework with a new version of CNN architecture and
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the SURF descriptor, which is referred to as the CNN-SURF
Consecutive Filtering and Matching (CSCFM) framework.
In fact, it is effective for the large scale image retrieval with
a dataset which has a category structure, i.e., whose samples
can be naturally classified into a number of categories (cor-
responding to main-brands). So, this is a kind of category-
structured image retrieval. In such a situation, the samples in
the dataset can be classified into different categories and the
number of categories is relatively stable as compared with
that of objects which are described by the images. It should
be noted that most of image retrieval tasks are essentially
category-structured. For example, the samples for commodity
image retrieval can be classified into clothes, fruits, comput-
ers and so on. The main colors of birds in the task of birds
image retrieval can be served as its categories. Moreover,
the division of categories in certain image retrieval tasks is
not necessary to be very clear, and an imprecise or even
fuzzy category division can be remarkable to reduce the
computational time with our CSCFM framework. In addition,
the number of samples in a dataset of category-structured
image retrieval can be increased as we need in practice while
the final retrieval performance of our CSCFM frameworkwill
not be influenced evidently, because our CSCFM approach
does not need a very accurate CNN classifier and the down-
stream improved SURFmatching is not impacted by this total
sample number. Therefore, our CSCFM framework work
in this paper can be easily applied to a variety of large
scale category-structured image retrieval tasks. As for the
task of wine label retrieval, all wine images can be cate-
gorized into different manufacturers, and then CNN is uti-
lized to recognize the possible coarse-grained main-brands
(manufacturers), i.e., to filter out the impossible main-brands
and narrow down the range of retrieval. On the other hand,
the SURF matching is improved by adopting the RANdom
SAmple Consensus (RANSAC)mechanism and the modified
Term Frequency-Inverse Document Frequency (TF-IDF) dis-
tance for the accurate retrieval of the fine-grained sub-brand
(item attribute under the manufacture). We conduct extensive
experiments on a dataset containing approximately 548kwine
images with 17, 328 main-brands and 260, 579 sub-brands.
It is demonstrated by the experimental results that our pro-
posedCSCFMmethod can solve thewine label retrieval prob-
lem effectively and efficiently. We also evaluate the CSCFM
method on two pubic object identification image retrieval
benchmarks, Oxford Buidings Benchmark(Oxford5k) and
the University of Kentucky Benchmark (UKB) and achieve
new state-of-the-art retrieval indexes of 88.3% mean average
precision and 3.92 N-S score in the two cases, respectively.

The main contributions of our work are as follows:
• A two-phase image retrieval framework is designed and
exploited for category-structured object identification,
particularly for wine label image retrieval. During the
coarse-to-fine retrieval process, it can retrieve the main-
brand and sub-brand of an inputted wine label image.

• The combination of deep CNN architecture and the
improved SURF descriptor is proposed to reduce the

semantic gap in the image retrieval without losing local
information.

• We improve the SURF matching by adopting the
RANSAC and our modified TF-IDF distance that can
reduce the computational cost greatly. In fact, this mod-
ified TF-IDF distance does not need to build the con-
ventional codebook and new word embedding, whose
training time is rather expensive.

• It is demonstrated by the experiments on two addi-
tional public benchmarks that our proposed CSCFM
framework outperforms the state-of-the-art methods on
category-structured object identification image retrieval.

The rest of this paper is organized as follows. Section II
presents an overview of related works. The CSCFM frame-
work is introduced in Section III. Section IV presents the
related experimental results and comparisons, followed by
concluding remarks in Section V.

II. RELATED WORK
For wine label or general object identification image retrieval,
we need to implement the Fully Convolutional Network
(FCN) to locate and cut off the accurate label region so that
the retrieval process can be much more effective. We further
need the CNN and SURF descriptor to establish our CSCFM
framework. In this section, we introduce these models and
related researches.

A. FCN
The architecture of FCN was firstly proposed by
Long et al. [18] to segment an image in a semantic mode.
They adapted advanced classification networks into fully
convolutional networks and transfered their learned repre-
sentations by fine-tuning to the segmentation task. They then
designed a novel skip architecture which combines seman-
tic information from a deep, coarse layer with appearance
information from a shallow, fine layer to produce accurate
and detailed segmentations. In fact, FCN turns the pixel-level
classification to the semantic segmentation. Instead of using
the full connection layer to get a fixed length feature vector
for different classification, it can process images in any size
andmake a pixel-level prediction by utilizing the up-sampling
layer to recover the images size. FCN has achieved good
performance on many segmentation tasks. In our framework,
we apply FCN to separate the wine label or bottle region from
the background area.

B. CNN
CNN was firstly designed for the recognition of English
letters in 1989. Krizhevsky et al. [19] developed it to AlexNet
that had achieved the lowest classification error rate on
the large scale image dataset ImageNet at that time. Then,
another version of CNN, Visual Geometry Group Network
(VGGNet), was further developed by Simonyan and Zisser-
man [20] with much more convolution layers than AlexNet.
To overcome the vanishing and exploding of gradient in
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deeper layers of neural networks, He et al. [21] proposed
Residual Network (ResNet) by adopting the Residual strategy
to further improve the classification accuracy. After that,
Chen et al. [22] constructed Dual Path Network (DPN) which
has superior performances on classification accuracy, training
speed and model size.

In addition to image classification, CNN has also applied
to image retrieval. Wan et al. [23] indicated that the neu-
ron activation of CNN can be served as generic features in
image retrieval. Gong et al. [24] combined VLAD with CNN
activation from deep convolution layers to form the com-
plete features. According to the performance of these CNN
based retrieval methods, we can see that CNN features can
effectively reduce the semantic gap and have great potential
for image retrieval. However, the success of these methods
depends on whether there are enough data to train their net-
works. As for the wine label dataset, this premise cannot be
guaranteed. In fact, lots of main-brands have only 10 labeled
samples and the samples under each main-brand also have
different sub-brands. Besides, some sub-brands have a few
examples. As a result, the sample sizes of both main-brands
and sub-brands are insufficient to train a reasonable CNN.
Considering these situations, our proposed CSCFM frame-
work uses a CNN to reduce retrieval range rather than extract
features for the retrieval of an input image. This CNN is
not used to return one accurate main-brand, but a limited
number of main-brands (It will be introduced in Section III-B
in detail), i.e. the CNN classifier of our proposed CSCFM
framework does not have to be very accurate. We then make
the SURF matching of the input image to the images under
these main-brands and return the final retrieval results. The
actual experiments demonstrated that our strategy can get
much higher accuracy with less retrieval time.

C. SURF
SURF descriptor is one of the most popular interest point
descriptors. Bay et al. [16] firstly introduced the SURF algo-
rithm as a scale and rotation invariant interest point detector
and descriptor. In fact, it is an improved version of SIFT
algorithm. The major difference between SIFT and SURF is
on the implementation of scale-space. SIFT implements the
image pyramid where the input image is iteratively convolved
with Gaussian kernel and repeatedly sub-sampled [25], while
SURF creates the scale-space by applying a group of kernels
where the scale increases to the consistent value of the orig-
inal image. Some studies [26]–[28] have shown that SURF
outperforms SIFT in terms of retrieval result and computa-
tional time, especially for the images with brightness or blur
variation. Actually, in our wine label database, the changes
of brightness and ambiguity are widespread, so we choose
SURF instead of SIFT as the method of feature extraction for
fine-grained matching in the CSCFM framework.

SURF descriptor has been used for image retrieval in cer-
tain studies. Mumar [29] and Velmurugan and Baboo [30]
all proposed an image retrieval system based on the SURF

algorithm for feature detection. Mukherjee et al. [31] pro-
posed a novel image retrieval scheme using random forest-
based semantic similarity measures and SURF-based bag
of visual words and demonstrated its superior performance.
However, the above studies are only effective for small
datasets. In fact, the feature representation capability of
SURF is limited because there exists semantic gap in image
retrieval. Besides, the length of the codebook is difficult to
determine and the training time is particularly long. More-
over, both the storage and computing costs are enormous on
a large dataset. To get rid of these problems, our work is
firstly to use a trained CNN to shrink retrieval range and
then to implement the SURE matching on a limited number
of images so that the storage and computing costs can be
reduced greatly. On the other hand, the SURE matching can
be improved by adopting the RANSAC and TF-IDF mecha-
nisms. In fact, the RANSAC algorithm [32] can effectively
remove the wrong SURF matching pairs by estimating the
parameters, while Term Frequency-Inverse Document Fre-
quency (TF-IDF) [33] is a weighting technique for informa-
tion retrieval and data mining. Specifically, TF measures the
frequency of the occurrence where a word appears in a docu-
ment, and IDFmeasures the importance of the word on distin-
guishing different documents. In order to reduce the training
time and space storage, we do not use the Bag-Of-Words
( BOW) strategy as commonly used in the TF-IDF scheme
[34], and modify the TF-IDF distance into a simplified form
which can be computed directly. In this way, our improved
SURF matching becomes more accurate with the help of our
modified TF-IDF distance and the RANSAC mechanism.

III. OUR APPROACH
In this section, we present the overall description of our
proposed CSCFM framework and the detailed descriptions
of its components.

A. THE OVERALL DESCRIPTION OF THE CSCFM
FRAMEWORK
Due to the limited storage space and computing ability of
mobile devices, we construct our CSCFM framework with
a client-server architecture for wine label image retrieval
and its overall flow is shown in Figure 3. In the client site,
the user can capture a wine label image using the camera
of mobile device and send it as an input query to the server
site via the wireless network for wine label retrieval. In the
server site, the FCN is firstly utilized to segment the wine
label area and remove the background on this input image.
Then, the fine-tuned DPN network based on the given labeled
dataset returns a number of possible main-brands of the
image. Our improved SURF matching is further made on all
wine label samples with these possible main-brands to get the
most similar images. Therefore, the retrieval result about the
main-brand and sub-brand is obtained from the original infor-
mation description of the similar images. Finally, the server
site transmits the retrieval result to the user in the client
site.
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FIGURE 3. The overall flow of the CSCFM framework.

B. FCN BASED SEGMENTATION OF WINE LABEL
In order to reduce the interference of background factors in
a wine label image and effectively focus on the wine label,
we need to separate the wine label or bottle region from
the background area. This is essentially a binary semantic
image segmentation problem. As FCN has achieved the good
perfprmance in segmentation, we apply FCN to separate the
wine label or bottle region from the background area in a
supervised learning mode. The wine label image segmenta-
tion procedure is shown in Figure 4. With the strategy of
transfer learning, we firstly design the FCNwith VGGNet-16
and pre-trained on the VOC2012 dataset, and then finetune
on our labeled wine label dataset. Specifically, this dataset
is collected by ourselves for wine label segmentation. It con-
tains about 9,000wine label images and each of them includes
the wine label area and the background area being marked
artificially. By implementing the trained FCN on each wine
label image, we get the mask of the wine label region in the
image, and then segment the wine label region from the image
and remove the background area according to the mask.

C. CNN BASED POSSIBLE MAIN-BRAND RECOGNITION
In order to improve retrieval efficiency, we train a CNN to
narrow down the range of retrieval by recognizing a goup
of possible main brands of the wine in an image. It is
known from the literature and experimental experiences that
the ResNet [21] can reuse the features implicitly by using
residual connections, but it is not so good at exploring new
features; on the contrary, the densely connected network [35]
can explore new features continuously, but may cause the
feature redundancy; DPN inherits both the advantages of
Residual Network (ResNet) and Dense Convolutional Net-
work (DenseNet). In addition, as compared to the other deep

FIGURE 4. The process of using the FCN to segment the wine label region
and remove the background area.

CNNs, DPN has higher accuracy, faster training speed and
smaller model size. For getting more powerful features to
reduce the semantic gap in the retrieval task and saving the
computing cost, we utilize DPN to recognize the possible
main-brands of a wine label image from a large wine label
dataset. Because there exist severely insufficient samples and
enormous number of main brand categories in the dataset, it is
still difficult to guarantee the classification accuracy of DPN
unless a transfer learning strategy is adopted. To reduce the
risk of error, we use the multiple possible solutions instead of
the best one like [36], that is, to returnmultiple possible main-
brands at the same time. In the light of these ideas, we have
the following adaptive strategy.

Let the probability that the query image xi belongs to main-
brand j be pij, where 1 ≤ j ≤ Z and Z is the number of main-
brands. N is the number of images in the retrieval dataset.
Without loss of generality, let pi1 ≥ p

i
2 ≥ · · · ≥ p

i
Z . In order to

ensure the accuracy of retrieval, we set the number of returned
main-brands by

M i
1 = argmin{z|

z∑
j=1

pij ≥ δ} (1)
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where z = 1, 2, . . . ,Z and δ is the threshold value set by
experience. Generally, we can have a reasonable number of
returned main-brands as δ is selected reasonably. However,
in certain cases, for example, x1 and x2 represent two query
samples with p11 = p12 = · · · = p1Z and δ/2 ≈ p21 > p22 =
· · · = p2Z ≈ 0, respectively. If δ is large, bothM1

1 andM2
1 are

too large. In this case, too manymain-brands will be returned.
In other words, DPN can not play a role in reducing the search
range which will increase the difficulty in SURF matching
later. Conversely, if the threshold δ is small,M i

1 is also small
as we want. But, the probability that the ground-truth of x1
is in the returned main-brand set is p1 = M1

1 /N , which will
be very small and severely affect the accuracy of the method.
So, δ is quite important and should be carefully selected. It has
been demonstratated by the experiments that the value of δ is
negatively affected by the accuracy of CNN and the average
sample size of per main-brand. That is, if the CNN classifier
is accurate enough or there are plenty of samples for each
main-brand, δ ∈ [0.6, 0.95) is good enough to generate a
reasonable reduced retrieval library to accelerate the down-
stream feature matching procedure. Conversely, a relatively
larger δ ∈ [0.95, 1) is a better choice to make up for the lack
of accuracy of CNN or extend the feature matching range to
cover more candidate samples.

To get rid of too large number of returned main-brands in
the extreme situations, we set an upper bound of the number
of main-brands to be a finite numberM i

2 for the query image
xi, which is also determined by experience. Finally, the num-
berM of main-brands returned by DPN can be determined by
the minimum ofM i

1 and M
i
2. That is,

M = min{M i
1,M

i
2} (2)

In a similar way as the setting of δ, a smaller M i
2 should be

selected in the situation of a more accurate CNN or larger
average sample size of per main-brand, and vice versa.

D. IMPROVED SURF MATCHING FOR THE FINAL
SUB-BRANDS
After getting the most possible main-brands of the query
image with the DPN, we implement the SURF matching pro-
cedure to retrieve the final sub-brands. Moreover, we modify
the TF-IDF distance in such a specific situation and combine
the RANSAC and modified TF-IDF mechanisms into the
SURF matching procedure to further improve the retrieval
accuracy so that an improved SURF matching mechanism is
proposed for the final sub-brands of the CSCFM system.

SURF is based on the Hessian Matrix, and uses the
Difference-of-Gaussian (DoG) as a basic accurate approxi-
mation of Hessian determinant. Then, it uses a distribution
of Haar-wavelet responses over all the points of the image
to extract the interest points or descriptors with the Haar-
wavelet responses being greater than a certain threshold
value. With the advanced architecture, SURF algorithm is a
speedup and improved version of of SIFT algorithm with the
robustness of scale and rotation. Furthermore, for the images
with brightness and blur variation, the SURF algorithm has

a better matching effect than the SIFT algorithm. Actually,
in our wine label image database, the changes of bright-
ness and ambiguity are widespread. Thus, we choose SURF
instead of SIFT as the component of our feature extraction.

For the accurate match between two images with the SURF
features, it is essential to correctly match the correspond-
ing interest points. However, there usually exist some false
matching pairs, especially when the images are as compli-
cated as the wine label images. In order to overcome this
difficulty, we adopt the RANSAC algorithm into the SURF
matching as done in [32] so that we can successfully delete
some mismatching point pairs, and improve the matching
performance, as shown in Figure5.

It is clear that the SURF descriptors or interest points
of an image contribute differently on image retrieval. If the
weights or importance levels of the descriptors are adopted in
the matching distance, the image retrieval can be more accu-
rate and effective. In fact, the weights can be estimated under
the TF-IDF framework by considering the SURE descrip-
tors as visual words, which thereby needs to build a proper
codebook as well as a word embedding in a common way
under the BOW strategy. However, the time cost of training
a codebook and a new word embedding cannot be under-
taken because the training dataset is so huge in our wine
label image retrieval. In order to overcome this difficulty,
we modify the TF-IDF distance into a simplified form which
can be computed directly from certain introduced functions.
In this way, we also adopt the modified TF-IDF distance into
the SURF matching so that our improved SURF matching
becomes more accurate and effective.

Firstly, we formally describe our modified TF-IDF dis-
tance. Let x0 be a query image and {x1, x2, . . . , xN } be the
image dataset. For each image, we extract the first K SURF
descriptors in the descending order of Haar-wavelet response.
{si1, s

i
2, . . . , s

i
K } denote the SURF descriptors of xi. Let d

j
pk be

the Euclidean distance between the p − th SURF descriptor
of x0 and the k − th SURF descriptor of xj. Without loss
of generality, let d jp1 < d jp2 < · · · < d jpK . For the image
retrieval, if the SURF descriptor s0p is noise, such as salt and

pepper noise, usually d jp1/d
j
p2 � 1; if s0p is the real feature

point of x0, such as contour folding, then d
j
p1/d

j
p2 ≈ 1. Given

the facts above, we define the matching result in s0p and s
j
k as

an indicator function by

θ
j
pk =

{
1, k ∈ Gjp
0, k /∈ Gjp

(3)

where

Gjp = {k|d
j
pk = min

l
{d jpl}, d

j
pr = min

l 6=k
{d jpl}, d

j
pk/d

j
pr ≥ ε}

and ε ∈ (0, 1] is the threshold parameter. Denote

TFp =
φ(s0p)∑
k φ(s

0
k )

(4)
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FIGURE 5. The left and right figures illustrate the SURF matching results
without and with the RANSAC mechanism, respectively, which show that
the SURF matching with the RANSAC mechanism can effectively remove
some mismatching pairs.

where φ(·) is an indicator function and φ(s0k ) = 1 if s0k ∈
{s01, s

0
2, . . . , s

0
K }, otherwise φ(s

0
k ) = 0.

Obviously, TFp represents the frequency that the pth SURF
descriptor of x0 appears in the image. Since each SURF
descriptor of the image is unique, TFp = 1/K .
As for the query image x0, the IDF of the pth SURF

descriptor is denoted as IDFp = N/cp, where cp indicates
the number of images containing s0p. In order to avoid a
real number divided by zero, let cp = 1 if there is not
eligible image. As a result, we define: cp = max{|{j|s0p ∈

{sj1, s
j
2, . . . , . . . , s

j
K }}|, 1}. So, we have the weighted SURF-

based distance between x0 and xj as follows.

dj =
K∑
p=1

TFpIDFp
K∑
k=1

θ
j
pk (5)

For convenience of the calculation, we equivalently use the
following simplified version instead of dj

Dj =
K∑
p=1

1
cp

K∑
k=1

θ
j
pk (6)

as our modified TF-IDF distance in this special situation.
As there is no need to build a codebook and a new word
embedding, the computation and storage of this modified TF-
IDF distance are relatively small. As demonstrated in our fol-
lowing experimental results, the computation of the modified
TF-IDF distance is almost the same as that of the conventional
SURF-based distance, while the retrieval performance with
the former is much better than that with the latter.

We then use the modified TF-IDF distance to measure
the degree of difference between a query image x0 and any
image in the image dataset or retrieval library. In fact, it is
very beneficial to match the true wine images with the same
main-brand and sub-brand. The computional complexity of
our modified TF-IDF distance is O(K 2H2), where H is the
dimension of the SURF descriptor. So, it is still polynomial
time as same as that of common Euclidean distance. The
details of this improved SURF matching algorithm is given
in Algorithm 1.

For example, as shown in Table 1, x0 represents the query
image, A,B,C,D are four images in the retrieval library.
s01, s

0
2, s

0
3, s

0
4, s

0
5 are point pairs matched between x0 and

A,B,C,D after eliminating the mismatching by RANSAC.
The number ‘‘1’’ indicates that this SURF descriptor is

Algorithm 1 The Improved SURF Matching Algorithm
Require: query image x0, retrieval library {x1, . . . , xN }
Ensure: S best matching images
1: set i = 1
2: Extract the SURF descriptors of x0 and xi, then imple-

ment the SURF matching between x0 and xi, and further
improve the matching results with RANSAC, as sug-
gested in [32]. The first K SURF descriptors of xi are
extracted and denoted as {si1, s

i
2, . . . , s

i
K }.

3: Calculate θ ipk by Eq.(3), where p, k = 1, 2, . . . ,K .
4: Calculate the parameter cp by

cp = max{|{j|s0p ∈ {s
j
1, s

j
2, . . . , . . . , s

j
K }}|, 1}

5: Calculate the modified TF-IDF distance Di by

Dj =
K∑
p=1

1
cp

K∑
k=1

θ
j
pk

6: If i < N , then i = i+ 1 and go to step 2, otherwise go to
the next step.

7: Sort D1,D2, . . . ,DN in the descending order.
8: Take the first S distances and return the matching images.

TABLE 1. An example of the improved SURF matching result.

matched, while the number ‘‘0’’ indicates that it is not
matched. ‘‘Raw Score’’ represents the SURF matching score
function without TF-IDF, and ‘‘Improved Score’’ represents
the SURF matching score function with the TF-IDF mecha-
nism. The conventional SURF matching algorithm calculates
the score function only according to the number of SURF
descriptors matched, ignoring the importance of individual
descriptor. The result of the conventional SURF matching
is that A is the best matching to x0. our improved SURF
matching considers the difference in the importance of each
SURF descriptor, for example, s05 is a unique feature between
x0 andD, it is more important than the other SURF descriptors
in the matching process, and our decision is that D is the best
matching to x0.

IV. EXPERIMENTAL RESULTS
In this section, we test and compare the CSCFM framework
by carrying out the following experiments:

• The improved SURF matching and comparison with the
conventional SURF and SIFT matching.

• CSCFM retrieval and comparison on a general wine
label image dataset to demonstrate the effectiveness of
the proposed framework.
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TABLE 2. Retrieval accuracies and times of the improved SURF matching method and competitive methods on our filtered wine label image dataset.

• CSCFM retrieval and comparison on a large real world
wine label image dataset.

• CSCFM retrieval and comparison on the Oxford build-
ings dataset.

• CSCFM retrieval and comparison on the University of
Kentucky Benchmark dataset.

Without specification, we make all these experiments
based on Python in Ubuntu 16.04. The hardware configura-
tion is as follows: NVIDIA Tesla M40 graphics card, 24GB
GPU memory, E5-2620 v4 @ 2.10GHz s × 2 processor. The
CNNs used in the experiments are all pre-trained on Ima-
geNet [19]. In the finetune process of each CNN, we adopt
the synchronized SGD training in a single GPU, starting with
a learning rate of 0.01. In order to accelerate the training
process and reduce the overfitting, we train the network with
the Batch Normalization (BN) [39] enabled. We utilize a
momentum of 0.9 and a weight decay of 10−4. The dropout
[40] of 0.5 is used before the final classifier layer.

A. THE IMPROVED SURF MATCHING PERFORMANCE AND
COMPARISON
We firstly evaluate the retrieval effect of the improved SURF
matchingmethod and compare it with the conventional SURF
matching on a manually filtered wine label image dataset.
There are 500 images on this dataset, including 100 query
images which represent 100 kinds of wine and a retrieval
library of 400 images. In the retrieval library, 100 images are
under the same main-brands and sub-brands for 100 query
images, 100 images only have same main-brands but dif-
ferent sub-brands for 100 query images, and the remain-
ing 200 images have completely different main-brands for
query images. An example of the dataset images are illus-
trated in Figure 6. For clarity, the improved SURF matching
method is referred to as SURF+RANSAC+TF-IDF, while
the SURFmatching combinedwith the RANSACmechanism
is referred to as SURF+RANSAC. SIFT related algorithms
are named in the same way. In order to reduce the influence of
noise and other interference factors, we extract only the first
500 SURF keypoints according to the degree of Haar-wavelet
responses. The experimental results are listed in Table 2.
It can be seen from Table 2 that the SURF descrip-

tors are more suitable for wine label retrieval than the

FIGURE 6. Typical wine label images in the retrieval library.

SIFT descriptors. Moreover, our improved SURF match-
ing method leveraged with the RANSAC mechanism and
the modified TF-IDF distance is effective and efficient for
wine label retrieval. The retrieval accuracy of the con-
ventional SURF matching method becomes lower when
the retrieval range is larger. The SURF+RANSAC match-
ing method introduces the RANSAC process so that the
retrieval time is increased in comparison with the pure
SURF matching. But the MA is increased by 27.6%
and the SA is increased by 40.0%. In comparison with
SURF+RANSAC, SURF+RANSAC+TF-IDF increases the
MA by 12.2% and the SA by 11.4%, with the retrieval time
being increased slightly by 2.3%, which demonstrates the
efficiency and effectiveness of our modified TF-IDF dis-
tance. Moreover, the comparison between SIFT+RANSAC
and SIFT+RANSAC+TF-IDF also leads to the same con-
clusion. As a result, our modified TF-IDF distance has
a big potentiality to enhance the general image matching
methods.
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TABLE 3. Retrieval accuracies and times of CSCFM and competitive methods on the general wine label image dataset, being detailed with the FCN
segmentation time TS , CNN classification time TC , feature extraction time TFP , feature matching time TTM and the total retrieval time T , respectively.

B. CSCFM RETRIEVAL AND COMPARISON ON A GENERAL
WINE LABEL IMAGE DATASET
We further implement the CSCFMmethod on a general wine
label image dataset, and compare it with the competitive
algorithms including our improved SURF matching method,
the BOW and VLAD algorithms with our improved SURF
descriptors, the CNNfeat-SVM algorithm proposed in [37],
and theObject-level Representation (OR) algorithm proposed
in [54]. Because the BOW and VLAD algorithms adopt
the K-means algorithm to establish the codebook, their time
complexity is O(NKT ), where N ,K ,T denote the number of
training samples, the codebook length and the times of itera-
tion, respectively. Taking into account that if the algorithms
are implemented on a large dataset, the cost of time will be
very high. So, we begin to take a subset of the large wine
label dataset as a general size experimental dataset. In fact,
we randomly select 13,929wine label imageswhich belong to
115main-brands and 6,582 sub-brands. For test, we randomly
select 115 query images. For fairness, the CNN models for
comparison are ResNeXt-50 [38] which are pre-trained on
ImageNet as well as our large wine label dataset which does
not contain 115 query images, and then finetuned on this
general dataset. For the BOW and VLAD algorithms, we set
the length of the codebook to be 800 and 100, respectively.
In order to speed up the retrieval process, we use the Ball-Tree
algorithm for the codebooks of BOW and VLAD algorithms,
which can reduce the time complexity of each image retrieval
from O(N) to O(logN). For the CNNfeat-SVM algorithm,
we extract the CNN features from the last fully connected
layer of ResNeXt-50 and use SVM for classification. The
multiple classification strategy is 1-VS-1 in SVM. In order
to compare the ability of CNN fully-connected layer features
to express the main-brands and sub-brands, we conduct two
experiments on the CNN-SVM algorithm, namely CNNfeat-
SVM1 and CNNfeat-SVM2. The image labels for training
can be set to the main-brand or sub-brand for the different
purpose. In the finetune process of ResNeXt-50, the batch
size is 100. As for the OR algorithm, the BING detector [54]
is firstly implemented to detect potential objects, and then
the SIFT features are extracted and aggregated by the VLAD
algorithm to form an image representation, while the CNN

features are extracted to form another image representation,
and finally the two representations are fused together to be
indexed into an inverted table and encoded with the Prod-
uct Quantization (PQ) scheme for the image retrieval. The
CSCSM framework in [17] also has a two-phase structure as
the CSCFM framework, but utilizes the ResNeXt for learning
the main-brands. In order to reduce the interference of back-
ground factors in wine label images, all the algorithms firstly
use the identically trained FCN to segment the wine label
region. The experimental results of all the above algorithms
are listed in Table 3.

From the experimental results in Table 3, we can see that
the improved SURF matching method has a high recognition
accuracy for the wine label sub-brand, but the time cost is
also high. In comparison with the improved SURF match-
ing method, the computational times of BOW and VLAD
significantly reduce, but their retrieval accuracies are rather
low. CNNfeat-SVM1 has a recognition accuracy of 91.67%
for the main-brands. It benefits from that the dataset has the
relatively less number of main-brands and the computation
time of the algorithm does not depend on the retrieval library
size through the CNN. The algorithm uses only 1.2496 sec-
onds per a query image. However, it cannot be used to iden-
tify the sub-brands, which makes it unusable to our wine
label retrieval. Compared with CNNfeat-SVM1, CNNfeat-
SVM2 can identify the sub-brands, but the retrieval accuracy
of the main-brands is remarkably reduced. CNN-based meth-
ods outperform the SURF-based methods, which demon-
strates the effectiveness of semantic-aware CNN features.
However, SIFT may be superior to CNN if the images are
rather confusing in the semantic space. In fact, SIFT describes
low-level details, while CNN describes general semantics.
It seems that none of them is systematically better than the
other. So it is a good choice to adopt both features to achieve
a better result. The OR algorithm fuses the CNN and SIFT
features. However, in the CNN finetune phase, the sample
sizes of different sub-brands are small. Moreover, there is
even a remarkable difference among some wine label images
of the same sub-brand, while there is only a slight difference
among some wine label images of different brands. As a
result, the discrimination of CNN features cannot be very
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FIGURE 7. (a) The real-world large wine label image dataset has different
sample sizes for the main-brands; (b) The same as (a) except for the
sub-brands instead of the main-brands.

TABLE 4. The numbers of samples for the main-brands and
sub-brands,respectively.

strong. Unlike the OR algorithm, the CNN classifiers of our
CSCSM and CSCFM frameworks do not have to be very
accurate, and they are just used to filter out some irrelevant
images. The down-stream feature matching procedure acts as
a makeup for CNN classifiers. Benefited from this strategy,
our CSCSMandCSCFMmethods both achieve the best accu-
racy on the recognition of main-brands by reaching 92.85%.
Because the improved SURF descriptors are more suitable
for wine label retrieval than the improved SIFT descriptors,
our CSCFM method has the higher recognition accuracy
for sub-brands and even takes less time. These experimental
results on this typical wine label dataset demonstrate that
our proposed CSCFMmethod outperforms other competitive
methods on wine label retrieval.

C. CSCFM RETRIEVAL AND COMPARISON ON THE LARGE
WINE LABEL IMAGE DATASET
We now implement the CSCFMmethod on a real-world large
wine label image dataset which was provided by Ruixun Sci-
ence and Technology (Beijing) Limited Company in China.
It contains 17,328 main-brands, 260,579 sub-brands and total
547,857 wine images. The examples of the wine label images
in the dataset are already illustrated in Figure 6. The above
two datasets in the experiments are actually the subsets of
this dataset. The relevant information of the main-brands and
sub-brands on this dataset is given in Table 4 and Figure7.
All of the images in this large dataset come from manual

shooting usingmobile phones. The size of the images is 500×
375 and all the images are formatted into RGB. It contains
many interference factors, such as background, fingers, light
changes, local highlight, marginal highlight, image rotation
and so on. Each image is labeled with a main-brand and a

FIGURE 8. The result of the data enhancement, where the horizontal axis
indicates the number of samples for each main-brand, and the vertical
axis indicates the number of samples for these main-bands after data
enhancement.

sub-brand. In our experiment, the ratio of the training and
test samples is set to 4:1. In order to reduce the imbalance
of training data, we firstly perform the data enhancement
including addingGaussian blur, changing contrast, sharpness,
saturation, brightness, and tilt. Figure8 shows the sample
sizes of the enhanced main-brands. After that, the FCN is
implemented to segment the wine label region and remove
the background area so that we can reduce the interference
from the background.

We then implement DPN92 [22] to narrow down the range
of retrieval by recognizing a number of possible main-brands.
So, we need to train the DPN92 in the supervised mode with
the training data. In the finetune process of DPN92, the batch
size is 40. Finally, we use the improved SURF matching to
get the final retrieval result.

Because the number of images, the number of main-brands
and the number of sub-brands for the dataset are all large,
most of the methods we mentioned above in Subsection IV-B
can not work for wine label retrieval on this dataset. For
the pure improved SURF matching, the retrieval time is
unbearable which force us to give up its experiment on this
large dataset. As for the SURF matching using the BOW
and VLAD strategy, while the retrieval time may be accept-
able, the training time of the codebooks is very long. The
CNNfeat-SVM1 can not be used for this task, because it is
incompetent in retrieving sub-brands. As for the CNNfeat-
SVM2, the accuracy of sub-brands retrieval will less than
that in Table 3, because each sub-brand has the average of
only 2.10 examples in the wine label image dataset. It is
far from satisfied for the training process. For the other
advanced image retrieval methods, due to their unpublished
source codes or intolerable time cost in this large scale wine
label dataset, we will only compare them with our proposed
method according to the results of their papers on the public
datasets in the next two subsections. Therefore, we mainly
implement the CSCFM method on this real-world wine label
dataset. During the experiment, we set δ and M2 to 95% and
5 to control the retrieval range of SURF matching. At the
same time, we also compare CSCFM with two other meth-
ods. One is the CSCSM framework with ResNet101 and the
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TABLE 5. Retrieval accuracies and times of CSCFM and competitive
methods on the large wine label image dataset.

improved SIFT matching. The other is the CSCSM frame-
work with DPN92 and the improved SIFT matching, being
referred to as DPN+ISIFT. Their experimental results are
listed in Table 5. From these results, we can find out that
the CSCFM method proposed in this paper is more effective,
which can get the better retrieval result with less time on the
large real-world wine label dataset. As shown in Table 3,
searching among 13929 images costs about 2.8452 sec-
onds per query image. While in Table 5, searching among
547,857 images costs about only 2.8956 seconds per query
image, which takes just 0.0504 second more than Experiment
IV-B. The reason is that in FCN segmentation and CNN
filtering procedure, time spent in both is very small and not
relative to the scale of retrieval datasets. The major time cost
is in our improved SURF matching. It depends on the size
of the reduced retrieval dataset after CNN filtering. However
the size of the reduced retrieval dataset is usually very small.
So that the time cost of the down-stream improved SURF
matching will not be impacted obviously by the scale of
total retrieval dataset. That is, different from common image
retrieval methods, our method can overcome the problem of
time boosting as the retrieval datasets going larger.

D. CSCFM RETRIEVAL AND COMPARISON ON OXFORD
BUILDINGS DATASET
We continue to evaluate the CSCFM method on a similar
benchmark of category-structured object identification image
retrieval, Oxford Buildings dataset [41]. Actually, the Oxford
Buildings dataset contains 5062 images downloaded from
Flickr by searching for particular landmarks. The collection
is manually annotated to generate a comprehensive ground
truth for 11 different landmarks, each represented by 5 pos-
sible queries. This gives a set of 55 queries for evalua-
tion. The mean average precision (mAP) is used to measure
the retrieval performance over the 55 queries. Some typical
images of the dataset are shown in Figure 9.
All the images except the 55 query images in the Oxford

Buildings dataset are taken as the training dataset. In order
to use a classification neural network to narrow down the
range of retrieval, we divide all the images into 11 cate-
gories according to the number of different buildings in the
images. We firstly perform the training data enhancement
including addingGaussian blur, changing contrast, sharpness,
saturation, brightness, and tilt so that the classification neural
network can learn the features of Oxford building images
more robustly. We then utilize ResNet-18 [21] to learn the

FIGURE 9. Typical images of the Oxford buildings dataset (Oxford 5k).

main-brands. Actually, our ResNet-18 classifier is pretrained
on the ImagesNet and finetuned only on the training set of
Oxford Buildings dataset. So, we do not use any extra prior
information in comparison with the other methods. In the
finetune process of ResNet-18, the batch size is 100. In the
retrieval process, we set δ andM2 to 95% and 5, respectively,
to reduce the retrieval range. Finally, we use the improved
SURF matching to get the final retrieval result.

We compare the CSCFM method with state-of-the-art
methods for the Oxford Buildings dataset in the literature.
Table 6 gives the experimental results of the CSCFM and
state-of-the-art methods on the Oxford Buildings dataset.
It should be noted that some methods like the attentive deep
local features based method proposed by Noh et al. [42],
enhance their results by finetuning the feature extractor on a
special landmarks dataset which is large-scale and similar to
the Oxford Buildings dataset. However, our CSCFM method
pretrains its CNN classifier only on the ImageNet. This is
unfair to our CSCFM method. Even so, as shown in Table 6,
our CSCFM method still achieves the best result among all
the approaches. If we use the large-scale landmarks dataset
to finetune our CNN classifier, we believe that our CSCFM
method can achieve a higher mAP. Moreover, as compared
with the other conventional feature and CNN feature fused
methods, our proposedCSCFMmethod achieves a significant
improvement of mAP over 4.9%. The key reason may be that
the use of CNN in our CSCFM framework is quite different
from those of the other fusionmethods. In our approach, CNN
is utilized as a classifier to shrink the down-stream retrieval
range, and does not need to be very accurate. While it is used
as an appended feature to the conventional features directly
for the image matching, the retrieval accuracy is influenced
obviously by the quality of CNN features. The experimental
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TABLE 6. Retrieval accuracies of the CSCFM and state-of-the-art methods
on the Oxford buildings dataset.

FIGURE 10. Typical examples of the images in UKB.

results show that our proposed strategy is evidently better for
this task than those of Zhang et al. [53] and Zheng et al. [52].

E. CSCFM RETRIEVAL AND COMPARISON ON THE
UNIVERSITY OF KENTUCKY BENCHMARK
We finally evaluate the CSCFM approach on another public
retrieval benchmark of category-structured object identifica-
tion image retrieval, the University of Kentucky Benchmark
(UKB) [48]. In fact, UKB contains 2,550 classes which each
class has 4 images in JPEG format, and total 10,200 images.
The images of this dataset are mostly taken indoors, such
as plants, toys, clocks and CD covers. They are taken with
different perspective, illumination and distance conditions.
All the images have a resolution of 640 × 480 pixels. Some
typical examples of the images in the dataset are shown
in Figure 10. We use the standard evaluation metric, N-S
score, to evaluate the performance of image retrieval. That is,
for each group, we select one image as the query and compute
the recall at its four retrieval results.

In our CSCFM method, all the images except the
2550 query images in UKB are taken as the training dataset
for the CNN. It is observed that the shooting angles of images
in the same label are very different. So, our data enhancement
especially emphasizes the rotation enhancement. We also
add Gaussian blur, change contrast, do sharpness and change
brightness in the data enhancement. We utilize ResNeXt-50

TABLE 7. Retrieval accuracies of the CSCFM and state-of-the-art methods
on UKB.

finetuned on our large wine label dataset to learn the features
from the training data. In the finetune process of ResNeXt-50,
the batch size is 60. In the retrieval process, we set δ and M2
to 95% and 1 to shrink the retrieval range. In the test phase,
this CNN can shrink the retrieval range by recognizing the
query image. Finally, we use the improved SURF matching
to get the final retrieval result.

We also compare our CSCFM method with the state-of-
the-art methods for UKB in the literature. Table 7 contains
the experimental results of the CSCFM method and state-of-
the-art methods on UKB.

As shown in Table 7, our CSCFM method achieves 3.92
N-S score, being the best result among all the methods.
This again shows that our proposed CSCFM framework has
the ability to be extended to the general category-structured
image retrieval tasks for object identification.

V. CONCLUSION
We have established the CNN-SURF Consecutive Filter-
ing and Matching (CSCFM) framework for the large scale
category-structured image retrieval of object identification,
especially for wine label image retrieval. This framework is
a two-phase system of consecutive filtering and matching.
Specifically, it utilizes the CNN trained for the main-brand
classification to narrow down the range of retrieval or fil-
ter out the impossible main-brands of a query image, and
then modify the TF-IDF distance and adopt the RANSAC
mechanism and this modified TF-IDF distance into the SURF
descriptors to construct the improved SURF matching to
get the final sub-brand of the query image. This strategy
makes the retrieval time complexity independent on the
number of samples for the retrieval dataset. It is demon-
strated by the experiments on a real-world wine label image
dataset that the CSCFM method can retrieve both the main-
brands and sub-brands of wine label effectively and effi-
ciently. It is further demonstrated by the experiments that the
CSCFMmethod has the ability to solve the general category-
structured image retrieval problems of of object identification
like the Oxford Buildings Benchmark (Oxford5k) and the
University of Kentucky Benchmark (UKB) and achieve the
competitive accuracy in comparison with the state-of-the-
art retrieval methods. Clearly, our CSCFM framework using
the combination of CNN classification and accurate feature
matching in the two phases can be easily utilized to many
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other category-structured image retrieval tasks. Moreover,
our modified TF-IDF distance gives a more effective and
efficient way to apply the TF-IDF mechanism to large scale
image retrieval. This strategy, we believe, can leverage the
performances of various feature matching methods, not lim-
ited to SURF matching and SIFT matching.
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