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Outline

♦ History of LLN and LIL for probabilities

♦ Why to study LLN and LIL for capacities

♦ Nonlinear probabilities and nonlinear expectations

♦ Main results
♦ Applications
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0.1. History of LLN and LIL for probability
? Law of large number(LLN):

(1) Brahmagupta (598-668), Cardano (1501-1576)
(2) Jakob Bernoulli(1713), Poisson (1835)
(3) Chebyshev, Markov, Borel(1909), Cantelli and Kolmogorov(IID).

? Law of iterated logarithm(LIL):
(1) Khintchine(1924) for Bernoulli model
Kolmogorov(1929), Hartman–Wintner(1941) (IID)
(2) Levy(1937) for Martingale
(3) Strassen(1964) for functional random variables.
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0.2. Strong LLN and LIL for probabilities
Assumption: {Xi} IID , Sn/n :=

∑n
i=1 Xi, EX1 = µ, Then

Theorem 1:Kolmogorov:

P ( lim
n→∞

Sn/n = µ) = 1

Theorem 2: Hartman–Wintner(1941): If EX1 = 0, EX2
1 = σ2, Then

(a)

P

(
lim sup

n→∞

Sn√
2n log log n

= σ

)
= 1

(b)

P

(
lim inf
n→∞

Sn√
2n log log n

= −σ

)
= 1

(c) Suppose that C({xn}) is the cluster set of a sequence of {xn} in R, then

P
(
C({ω : Sn(ω)/

√
2nloglogn}) = [−σ, σ]

)
= 1.
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0.3. Why to study LLN and LIL in Finance
THEOREM 1 (Black-Scholes, 1973:) In complete markets, there exists a
unique probability measure Q, such that the pricing of option ξ at strike
date T is given by EQ[ξe−rT ]. Where r = 0 is interest rate of bond.

Monte Carlo, limn→∞
1
n

∑n
i=1 Xi = EQ[ξ].

? (Linear) expectation← Black-Scholes→ Complete Markets

? infQ∈P EQ[ξ], supQ∈P EQ[ξ] ⇐⇒ Incomplete Markets, Q is not unique,
SET P .

? Super-pricing: infQ∈P EQ[ξ], supQ∈P EQ[ξ]. Nonlinear expectation!
limn→∞ Sn/n =?

http://www.uwo.ca
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0.4. Bernoulli Trials with ambiguity
? Bernoulli Trials:

Repeated independent trials are called Bernoulli trials if there are only
two possible outcomes for each trial and their probabilities REMAIN
(are no longer) the same throughout the trials.

? Let Xi = 1 if head occurs and Xi = 0 if tail occurs.
Pθ(Xi = 1) = θ, Pθ(Xi = 0) = 1− θ, Sn :=

∑n
i=1 Xi

? If θ = 1/2 (Unbalance), LLN stats

Pθ( lim
n→∞

Sn/n = 1/2) = 1

Or
lim

n→∞
Sn/n = 1/2 a.s (Pθ)

http://www.uwo.ca
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? If a coin is balance. Pθ(Xi = 1) = θ ∈ [1/3, 1/2].

Let P := {Pθ, θ ∈ [1/3, 1/2]} .

EPθ
[Xi] = θ Unknown,

But maxP∈P EP [Xi] = 1/2, minP∈P EP [Xi] = 1/3.

? Question: what is the limit Sn/n→?

(a) Capacity: If V (A) := maxP∈P P (A), v(A) := minP∈P P (A)

Can Sn/n converge to maxP∈P EP [Xi] or minP∈P EP [Xi] a.s. V or v?

(b) The relation between the set of limit points of Sn/n and the interval
of minP∈P EP [Xi] and maxP∈P EP [Xi].

http://www.uwo.ca


Main Question
Main Question
Reports

Main Question

Home Page

Title Page

JJ II

J I

Page 8 of 21

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

0.5. Linear and Nonlinear Expectations
? Kolmogorov: Linear expectation:P : F → [0, 1], P (A) = E[IA]

P (A + B) = P (A) + P (B), A ∩B = ∅ ⇔ E[ξ + η] = E[ξ] + E[η]

Expectation is a linear functional of random variable.

? Nonlinear probability(capacity): V (·) : F → [0, 1] but

V (A + B) 6= V (A) + V (B), evenA ∩B = ∅.

?Nonlinear expectation: E(ξ) is nonlinear functional in the sense of

E[ξ + η] 6= E[ξ] + E[η].

Capacity V (A) = E[IA] is nonlinear.
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Modes of nonlinear expectations and capacity

(1)Choquet expectations (Choquet 1953, physics )

CV [X ] :=

∫ ∞
0

V (X ≥ t)dt +

∫ 0

−∞
[V (X ≥ t)− 1]dt.

(2)g-expectation (Peng 1997)

(3) Sub-linear expectation(Peng 2007).

(a)Monotonicity: X ≥ Y implies E[X ] ≥ E[Y ].
(b)Constant preserving: E[c] = c, ∀c ∈ R.
(c)Sub-additivity: E[X + Y ] ≤ E[X ] + E[Y ].
(d)Positive homogeneity: E[λX ] = λE[X ],∀λ ≥ 0.

(1) Distorted probability measure: V (A) = g(P (A)), g : [0, 1]→ [0, 1].

(2) 2-alternating capacity: V (A ∪B) ≤ V (A) + V (B)− V (A ∩B)

(3) V (A) = maxP∈P P (A),P set of Probability.

http://www.uwo.ca
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1. Independence w.r.t probability or capacity

? Linear: A and B independent P (AB) = P (A)P (B)

⇔ E[φ(IA + IB)] = E[E[φ(x + IB)]|x=IA
],∀φ(x)

? Nonlinear: Epstein(2002), Marinacci(2005) V (AB) = V (A)V (B)

⇐ E[φ(IA + IB)] = E[E[φ(x + IB)]|x=IA
]
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2. Definition of IID under expectation

DEFINITION 1 (Peng 2007)

Independence: A random variable X ∈ H is said to be independent under

E to Y, if for each ϕ such that ϕ(X, Y ) ∈ H and ϕ(X, y) ∈ H for each y ∈ R

E[ϕ(X, Y )] = E[ϕ(Y )],

where ϕ(y) := E[ϕ(X, y)].

Identical distribution: Random variables X and Y are said to be identi-

cally distributed, if for each ϕ such that ϕ(X), ϕ(Y ) ∈ H,

E[ϕ(X)] = E[ϕ(Y )].

Mutual independence: X and Y are mutually independent

E[φ(X + Y )] = E[E[φ(X + y)]|y=Y ]

http://www.uwo.ca
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3. Definition: capacity and nonlinear expectation

(1) Probability space :(Ω,F , P )⇒ (Ω,F ,P). Where P := {Pθ : θ ∈ Θ}.

(2) Capacity: P ⇒ (v, V ), where

v(A) = inf
Q∈P

Q(A), V (A) = sup
Q∈P

Q(A).

(3)Property:

V (A) + V (Ac) ≥ 1, v(A) + v(Ac) ≤ 1

but

V (A) + v(Ac) = 1.

(4) Nonlinear expectations: Lower-upper expectation E [ξ] and E[ξ]

E [ξ] = inf
Q∈P

EQ[ξ], E[ξ] = sup
Q∈P

EQ[ξ]
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4. LLN for sub-linear expectations

? Weak LLN:

THEOREM 2 (Peng 2007,2008) {Xi}∞i=1 IID random variables, µ :=

E[X1], µ := E [X1]. Then for any continuous and linear growth func-

tion φ,

E

[
φ

(
1

n

n∑
i=1

Xi

)]
→ sup

µ≤x≤µ
φ(x), as n→∞.

? Theorem ( Peng, 2006,2007). CLT for IID
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? V (AB) = V (A)V (B), v(AB) = v(A)v(B)

? Theorem ( Epstein, 02, Marinacci, 99, 05). ξ Bounded, Ω Polish,Cv[Xi] =

µ, CV [Xi] = µ. {Xi} IID, then

v
(
µ ≤ lim infn→∞Sn/n ≤ lim supn→∞Sn/n ≤ µ}

)
= 1.

Where V is totally 2-alternating V (A
⋃

B) ≤ V (A) + V (B)− V (AB),

here Cv and CV is Choquet are integrals.

Note Cv[X ] ≤ E [X ] ≤ E[X ] ≤ CV [X ],∀X.
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4.1. Limit theorem 1
Theorem: If {Xi} is IID, then Sn

n converges as n→∞ a.s. v if and only if

E [X1] = E[X1].

In this case,

lim Sn/n = E [X1], a.s. v.
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5. Main results

THEOREM 3 {Xi}ni=1 IID under nonlinear expectation E. Set µ := E[Xi],

µ := E [Xi] and Sn :=
∑n

i=1 Xi. If E[|Xi|1+α] <∞ for α > 0. Then

(I)

v
(
ω ∈ Ω : µ ≤ lim infn→∞Sn(ω)/n ≤ lim supn→∞Sn/n(ω) ≤ µ}

)
= 1.

(II)

V (ω ∈ Ω : lim supn→∞Sn(ω)/n = µ) = 1

V
(
ω ∈ Ω : lim infn→∞Sn(ω)/n = µ

)
= 1.

(III) Suppose that C({Sn(ω)/n}) is the cluster set of a sequence of

{Sn(ω)/n}, then

V
(
ω ∈ Ω : C({Sn(ω)/n}) = [µ, µ]

)
= 1
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6. Law of iterated logarithm for sub-linear ex-
pectations

THEOREM 4 {Xn} bounded IID. E[X1] = E [X1] = 0, σ2 := E[X2
1 ], σ2 :=

E [X2
1 ]. Let Sn :=

∑n
i=1 Xi, an :=

√
2n lg lg n, then

(I)

v

(
σ ≤ lim sup

n

Sn

an
≤ σ

)
= 1;

(II)

v

(
−σ ≤ lim inf

n

Sn

an
≤ −σ

)
= 1.

(III) Suppose that C({xn}) is the cluster set of a sequence of {xn} in R,

then

v
(
C({Sn/

√
2nloglogn}) ⊃ (−σ, σ)

)
= 1.
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7. Key of proof

THEOREM 5 Suppose ξ is distributed to G normal N(0; [σ2, σ2]), where 0 <

σ ≤ σ <∞. Let φ be a bounded continuous function. Furthermore, if φ is a

positively even function, then, for any b ∈ R,

e
− b2

2σ2E [φ(ξ)] ≤ E [φ(ξ − b)].
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8. Application

Total 100 balls in box, Black + Red + Yellow = 100,

Black = Red, Yellow ∈ [30, 40], then PY ∈ [3/10, 4/10].

Take a ball from this box,

Xi = 1, if ball is black, Xi = 0, if ball is Yellow, Xi = −1 for red.

Sn =
∑n

i=1 Xi, is the excess frequency of black than Red

Then

(a) E[Xi] = E [Xi] = 0

(b) √
6/10 ≤ lim sup

n→∞

Sn√
2n lg lg n

≤
√

7/10.
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9. Nonlinear expectation in Finance

In incomplete markets, there exists a set P of probability measures, such

that the super-sub-hedging price of option ξ at strike date T are given by

µ := infQ∈P EQ[ξ], µ := supQ∈P EQ[ξ].

then

(1)

µ ≤ lim infn→∞Sn(ω)/n ≤ lim supn→∞Sn/n(ω) ≤ µ

(2)

lim supn→∞Sn(ω)/n = µ, V,

lim infn→∞Sn(ω)/n = µ, V
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Thank you !
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