

Strong Law of large number Law of the iterated logarithm for nonlinear probabilities

ZENGJING CHEN

SHANDONG UNIVERSITY

July 5, 2010

Outline

- \diamond History of LLN and LIL for probabilities
- \diamond Why to study LLN and LIL for capacities
- \diamond Nonlinear probabilities and nonlinear expectations
- \Diamond Main results
- \Diamond Applications

0.1. History of LLN and LIL for probability

- \star Law of large number(LLN):
	- (1) Brahmagupta (598-668), Cardano (1501-1576)
	- (2) Jakob Bernoulli(1713), Poisson (1835)
	- (3) Chebyshev, Markov, Borel(1909), Cantelli and Kolmogorov(IID).
- \star Law of iterated logarithm(LIL):
	- (1) Khintchine(1924) for Bernoulli model
	- Kolmogorov(1929), Hartman–Wintner(1941) (IID)
	- (2) Levy(1937) for Martingale
	- (3) Strassen(1964) for functional random variables.

[Main Question](#page-9-0) [Main Question](#page-10-0) [Reports](#page-11-0)

[Main Question](#page-19-0)

[Home Page](http://www.uwo.ca) Title Page 11 I II \blacksquare *Page 4 of 21 Go Back Full Screen Close Quit*

(b)

0.2. Strong LLN and LIL for probabilities

Assumption: $\{X_i\}$ IID, $S_n/n := \sum_{i=1}^n X_i$, $EX_1 = \mu$, Then Theorem 1:Kolmogorov:

$$
P(\lim_{n \to \infty} S_n/n = \mu) = 1
$$

Theorem 2: Hartman–Wintner(1941): If $EX_1 = 0, EX_1^2 = \sigma^2$, Then (a)

$$
P\left(\limsup_{n\to\infty}\frac{S_n}{\sqrt{2n\log\log n}}=\sigma\right)=1
$$

$$
P\left(\liminf_{n\to\infty}\frac{S_n}{\sqrt{2n\log\log n}}=-\sigma\right)=1
$$

(c) Suppose that $C({x_n})$ is the cluster set of a sequence of ${x_n}$ in R, then

$$
P\left(C(\{\omega: S_n(\omega)/\sqrt{2n\log\log n}\}) = [-\sigma, \sigma]\right) = 1.
$$

[Main Question](#page-9-0) [Main Question](#page-10-0) [Reports](#page-11-0)

0.3. Why to study LLN and LIL in Finance

THEOREM 1 *(Black-Scholes, 1973:) In complete markets, there exists a unique probability measure* Q*, such that the pricing of option* ξ *at strike date* T *is given by* $E_{\mathcal{O}}[\xi e^{-rT}]$. Where $r = 0$ *is interest rate of bond.*

Monte Carlo, $\lim_{n\to\infty}\frac{1}{n}$ $\frac{1}{n} \sum_{i=1}^{n} X_i = E_Q[\xi].$

- \star (Linear) expectation ← Black-Scholes \rightarrow Complete Markets
- \star inf_{Q∈P} $E_Q[\xi]$, sup_{$Q \in \mathcal{P}$} $E_Q[\xi] \iff$ Incomplete Markets, Q is not unique, SET P.
- \star Super-pricing: inf_{Q∈P} $E_Q[\xi]$, sup_{Q∈P} $E_Q[\xi]$. Nonlinear expectation! $\lim_{n\to\infty} S_n/n=?$

[Main Question](#page-9-0) [Main Question](#page-10-0) [Reports](#page-11-0)

0.4. Bernoulli Trials with ambiguity

 \star Bernoulli Trials:

Repeated independent trials are called Bernoulli trials if there are only two possible outcomes for each trial and their probabilities REMAIN (are no longer) the same throughout the trials.

 \star Let $X_i = 1$ if head occurs and $X_i = 0$ if tail occurs.

$$
P_{\theta}(X_i = 1) = \theta
$$
, $P_{\theta}(X_i = 0) = 1 - \theta$, $S_n := \sum_{i=1}^n X_i$

 \star If $\theta = 1/2$ (Unbalance), LLN stats

$$
P_{\theta}(\lim_{n \to \infty} S_n/n = 1/2) = 1
$$

Or

$$
\lim_{n \to \infty} S_n/n = 1/2 \quad a.s \quad (P_{\theta})
$$

[Main Question](#page-9-0) [Main Question](#page-10-0) [Reports](#page-11-0)

 \star If a coin is balance. $P_{\theta}(X_i = 1) = \theta \in [1/3, 1/2]$. Let $\mathcal{P} := \{P_{\theta}, \theta \in [1/3, 1/2]\}$. $E_{P_{\theta}}[X_i] = \theta$ Unknown, But $\max_{P \in \mathcal{P}} E_P[X_i] = 1/2$, $\min_{P \in \mathcal{P}} E_P[X_i] = 1/3$. \star Question: what is the limit $S_n/n \rightarrow ?$ (a) Capacity: If $V(A) := \max_{P \in \mathcal{P}} P(A)$, $v(A) := \min_{P \in \mathcal{P}} P(A)$ Can S_n/n converge to $\max_{P \in \mathcal{P}} E_P[X_i]$ or $\min_{P \in \mathcal{P}} E_P[X_i]$ a.s. V or v ? (b) The relation between the set of limit points of S_n/n and the interval of $\min_{P \in \mathcal{P}} E_P[X_i]$ and $\max_{P \in \mathcal{P}} E_P[X_i]$.

[Main Question](#page-9-0) [Main Question](#page-10-0) [Reports](#page-11-0)

0.5. Linear and Nonlinear Expectations

 \star Kolmogorov: Linear expectation: $P : \mathcal{F} \to [0, 1], P(A) = E[I_A]$

 $P(A + B) = P(A) + P(B)$, $A \cap B = \emptyset \Leftrightarrow E[\xi + \eta] = E[\xi] + E[\eta]$

Expectation is a linear functional of random variable.

 \star Nonlinear probability(capacity): $V(\cdot) : \mathcal{F} \to [0, 1]$ but

 $V(A + B) \neq V(A) + V(B)$, even $A \cap B = \emptyset$.

*Nonlinear expectation: $\mathbb{E}(\xi)$ is nonlinear functional in the sense of

 $\mathbb{E}[\xi + \eta] \neq \mathbb{E}[\xi] + \mathbb{E}[\eta].$

Capacity $V(A) = \mathbb{E}[I_A]$ is nonlinear.

[Main Question](#page-9-0) [Main Question](#page-10-0) [Reports](#page-11-0)

Modes of nonlinear expectations and capacity

(1)Choquet expectations (Choquet 1953, physics)

$$
C_V[X] := \int_0^\infty V(X \ge t)dt + \int_{-\infty}^0 [V(X \ge t) - 1]dt.
$$

(2)g-expectation (Peng 1997)

- (3) Sub-linear expectation(Peng 2007).
	- (a)Monotonicity: $X > Y$ implies $\mathbb{E}|X| > \mathbb{E}|Y|$. (b)Constant preserving: $\mathbb{E}[c] = c, \forall c \in \mathbb{R}$. (c)Sub-additivity: $\mathbb{E}[X+Y] \leq \mathbb{E}[X] + \mathbb{E}[Y]$. (d)Positive homogeneity: $\mathbb{E}[\lambda X] = \lambda \mathbb{E}[X], \forall \lambda \geq 0$.

(1) Distorted probability measure: $V(A) = g(P(A)), g : [0, 1] \rightarrow [0, 1].$ (2) 2-alternating capacity: $V(A \cup B) \le V(A) + V(B) - V(A \cap B)$ (3) $V(A) = \max_{P \in \mathcal{P}} P(A)$, P set of Probability.

Main Question [Main Question](#page-10-0) [Reports](#page-11-0)

[Main Question](#page-19-0)

[Home Page](http://www.uwo.ca) Title Page $\left| \cdot \right|$ \blacksquare *Page 10 of 21 Go Back Full Screen Close Quit*

1. Independence w.r.t probability or capacity

 \star Linear: A and B independent $P(AB) = P(A)P(B)$

$$
\Leftrightarrow E[\phi(I_A+I_B)] = E[E[\phi(x+I_B)]|_{x=I_A}], \forall \phi(x)
$$

* Nonlinear: Epstein(2002), Marinacci(2005) $V(AB) = V(A)V(B)$

 $\Leftrightarrow \mathbb{E}[\phi(I_A + I_B)] = \mathbb{E}[\mathbb{E}[\phi(x + I_B)]|_{x = I_A}]$

[Main Question](#page-9-0) Main Question [Reports](#page-11-0)

2. Definition of IID under expectation

DEFINITION 1 *(Peng 2007)*

Independence: A random variable $X \in \mathcal{H}$ is said to be independent under E *to Y, if for each* φ *such that* $\varphi(X, Y) \in \mathcal{H}$ *and* $\varphi(X, y) \in \mathcal{H}$ *for each* $y \in \mathbb{R}$

 $\mathbb{E}[\varphi(X, Y)] = \mathbb{E}[\overline{\varphi}(Y)],$

where $\overline{\varphi}(y) := \mathbb{E}[\varphi(X, y)].$

Identical distribution: *Random variables* X *and* Y *are said to be identically distributed, if for each* φ *such that* $\varphi(X)$ *,* $\varphi(Y) \in \mathcal{H}$ *,*

 $\mathbb{E}[\varphi(X)] = \mathbb{E}[\varphi(Y)].$

Mutual independence: X and Y are mutually independent

 $\mathbb{E}[\phi(X+Y)] = \mathbb{E}[\mathbb{E}[\phi(X+y)]|_{y=Y}]$

[Main Question](#page-9-0) [Main Question](#page-10-0) Reports

3. Definition: capacity and nonlinear expectation

(1) Probability space : $(\Omega, \mathcal{F}, P) \Rightarrow (\Omega, \mathcal{F}, P)$. Where $P := \{P_{\theta} : \theta \in \Theta\}.$ (2) Capacity: $P \Rightarrow (v, V)$, where

$$
v(A) = \inf_{Q \in \mathcal{P}} Q(A), \quad V(A) = \sup_{Q \in \mathcal{P}} Q(A).
$$

(3)Property:

 $V(A) + V(A^c) \ge 1$, $v(A) + v(A^c) \le 1$

but

 $V(A) + v(A^c) = 1.$

(4) Nonlinear expectations: Lower-upper expectation $\mathcal{E}[\xi]$ and $\mathbb{E}[\xi]$

 $\mathcal{E}[\xi] = \inf$ $Q{\in}\mathcal{P}$ $E_Q[\xi], \qquad \mathbb{E}[\xi] = \sup$ $Q{\in}\mathcal{P}$ $E_Q[\xi]$

[Main Question](#page-19-0) [Home Page](http://www.uwo.ca) Title Page $\blacktriangleright\blacktriangleright$ \blacksquare *Page 13 of 21 Go Back Full Screen Close Quit*

4. LLN for sub-linear expectations

\star Weak LLN:

THEOREM 2 (Peng 2007,2008) $\{X_i\}_{i=1}^{\infty}$ *IID random variables*, $\overline{\mu}$:= $\mathbb{E}[X_1], \mu := \mathcal{E}[X_1].$ Then for any continuous and linear growth func*tion* ϕ , $\left[\frac{n}{1-\epsilon} \right]$

$$
\mathbb{E}\left[\phi\left(\frac{1}{n}\sum_{i=1}^n X_i\right)\right] \to \sup_{\underline{\mu} \leq x \leq \overline{\mu}} \phi(x), \text{ as } n \to \infty.
$$

 \star Theorem (Peng, 2006,2007). CLT for IID

[Main Question](#page-9-0) [Main Question](#page-10-0) [Reports](#page-11-0)

- $\star V(AB) = V(A)V(B), v(AB) = v(A)v(B)$
- \star Theorem (Epstein, 02, Marinacci, 99, 05). ξ Bounded, Ω Polish, $C_v[X_i] =$ $\mu,C_V[X_i]=\overline{\mu}.\; \{X_i\}$ IID, then

$$
v\left(\underline{\mu} \le \liminf_{n \to \infty} S_n/n \le \limsup_{n \to \infty} S_n/n \le \overline{\mu}\right) = 1.
$$

Where V is totally 2-alternating $V(A \cup B) \le V(A) + V(B) - V(AB)$, here C_v and C_V is Choquet are integrals. Note $C_v[X] \leq \mathcal{E}[X] \leq \mathbb{E}[X] \leq C_V[X], \forall X$.

[Main Question](#page-19-0) [Home Page](http://www.uwo.ca) Title Page $\left| \cdot \right|$ \blacksquare *Page 15 of 21 Go Back Full Screen Close Quit*

4.1. Limit theorem 1

Theorem: If $\{X_i\}$ is IID, then $\frac{S_n}{n}$ converges as $n \to \infty$ a.s. v if and only if

 $\mathcal{E}[X_1] = \mathbb{E}[X_1].$

In this case,

 $\lim S_n/n = \mathcal{E}[X_1], \quad a.s. \quad v.$

(II)

5. Main results

THEOREM 3 $\{X_i\}_{i=1}^n$ *IID under nonlinear expectation* \mathbb{E} *. Set* $\overline{\mu}$:= $\mathbb{E}[X_i]$ *,* $\underline{\mu}:=\mathcal{E}[X_i]$ and $S_n:=\sum_{i=1}^n X_i$. If $\mathbb{E}[|X_i|^{1+\alpha}]<\infty$ for $\alpha>0$. Then *(I)*

 $v(\omega \in \Omega : \underline{\mu} \le \liminf_{n \to \infty} S_n(\omega)/n \le \limsup_{n \to \infty} S_n/n(\omega) \le \overline{\mu}\}) = 1.$

$$
V(\omega \in \Omega : \limsup_{n \to \infty} S_n(\omega)/n = \overline{\mu}) = 1
$$

$$
V(\omega \in \Omega : \liminf_{n \to \infty} S_n(\omega)/n = \underline{\mu}) = 1.
$$

(III) Suppose that $C({S_n(\omega)/n})$ *is the cluster set of a sequence of* ${S_n(\omega)/n}$ *, then*

 $V(\omega \in \Omega : C(\lbrace S_n(\omega)/n \rbrace) = [\mu, \overline{\mu}]) = 1$

(I)

(II)

v

6. Law of iterated logarithm for sub-linear expectations

THEOREM 4 $\{X_n\}$ *bounded IID.* $\mathbb{E}[X_1] = \mathcal{E}[X_1] = 0, \overline{\sigma}^2 := \mathbb{E}[X_1^2], \underline{\sigma}^2 :=$ $\mathcal{E}[X_1^2]$. Let $S_n := \sum_{i=1}^n X_i$, $a_n := \sqrt{2n \lg \lg n}$, then

$$
v\left(\underbrace{\sigma}_{n} \le \limsup_{n} \frac{S_n}{a_n} \le \overline{\sigma}\right) = 1;
$$

$$
v\left(-\overline{\sigma} \le \liminf_{n} \frac{S_n}{a_n} \le -\underline{\sigma}\right) = 1.
$$

(III) Suppose that $C({x_n})$ *is the cluster set of a sequence of* ${x_n}$ *in* R, *then*

$$
v\left(C(\{S_n/\sqrt{2n\log\log n}\})\supset(-\underline{\sigma},\underline{\sigma})\right)=1.
$$

[Main Question](#page-19-0) [Home Page](http://www.uwo.ca) Title Page $\blacktriangleright\blacktriangleright$ \blacksquare *Page 18 of 21 Go Back Full Screen Close*

Quit

7. Key of proof

THEOREM 5 Suppose ξ is distributed to G normal $N(0; [\underline{\sigma}^2, \overline{\sigma}^2])$, where $0 <$ $\sigma \leq \overline{\sigma} < \infty$ *. Let* ϕ *be a bounded continuous function. Furthermore, if* ϕ *is a positively even function, then, for any* $b \in R$,

> $e^{-\frac{b^2}{2a}}$ $\overline{{}^{2\sigma^2}}\mathcal{E}[\phi(\xi)] \leq \mathcal{E}[\phi(\xi-b)].$

[Main Question](#page-9-0) [Main Question](#page-10-0) [Reports](#page-11-0)

[Main Question](#page-19-0)

[Home Page](http://www.uwo.ca)

Title Page

 \blacksquare

Page 19 of 21

Go Back

Full Screen

Close

Quit

 $\blacktriangleright\blacktriangleright$

8. Application

Total 100 balls in box, Black + Red + Yellow = 100 , Black = Red, Yellow \in [30, 40], then $P_Y \in$ [3/10, 4/10]. Take a ball from this box, $X_i = 1$, if ball is black, $X_i = 0$, if ball is Yellow, $X_i = -1$ for red. $S_n = \sum_{i=1}^n X_i$, is the excess frequency of black than Red Then (a) $\mathbb{E}[X_i] = \mathcal{E}[X_i] = 0$ (b) $\sqrt{6/10} \leq \limsup$ $n\rightarrow\infty$ S_n $\overline{}$ $\overline{2n\lg\lg n}$ $\leq \sqrt{7/10}$.

[Main Question](#page-9-0) [Main Question](#page-10-0) [Reports](#page-11-0)

9. Nonlinear expectation in Finance

In incomplete markets, there exists a set P of probability measures, such that the super-sub-hedging price of option ξ at strike date T are given by $\mu := \inf_{Q \in \mathcal{P}} E_Q[\xi], \overline{\mu} := \sup_{Q \in \mathcal{P}} E_Q[\xi].$ then

$$
\underline{\mu} \le \liminf_{n \to \infty} S_n(\omega)/n \le \limsup_{n \to \infty} S_n/n(\omega) \le \overline{\mu}
$$

(2)

(1)

$$
\limsup_{n\to\infty}S_n(\omega)/n=\overline{\mu},\quad V,
$$

$$
\liminf_{n\to\infty} S_n(\omega)/n = \underline{\mu}, \quad V
$$

Full Screen

Close

Quit

Thank you !