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(�) Background
• Item nonresponse: occurs frequently in sample surveys.

Example In sample survey on transportation, some vehicles may not be
found, but their tonnage or seat capacity is known to us.

• Solutions: (1) Increasing response probability; (2) Imputing the missing
values of the sampled units.

• Imputation methods: Ratio imputation, regression imputation, random im-
putation etc.

• Shortcoming: Uniform response (often), simple random sampling

• PPSWR sampling: the sampling with probability proportional to size with
replacement which is often used in the first stage of multistage sampling.
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(�) Imputation method under PPSWR
sampling
1. Notation
• Survey population U : consist of N distinct units identified through

the labels i = 1, ..., N .

Suppose that the auxiliary variable, X , is available for each unit of

the population, but the variable of interest, Y , is missing for some

of the sampled units.

• sn: sample with size n drawn from U by PPSWR sampling.

• sr: the respondent set with size r(≥ 1).

• sn−r: the nonrespondent set with size n− r.

http://192.9.200.1


Background

Imputation method . . .

Special case: SRS . . .

Simulation studies

Future researches

�¯Ì�

I K �

JJ II

J I

1 5�� 23

� £

�¶w«

' 4

ò Ñ

• Uniform response mechanism: independent response across sample units
and equal response probability, p (q ≡ 1− p).

• Non-uniform response mechanism: independent response across sample
units and possibly unequal response probabilities, pi (qi ≡ 1− pi).

• Response indicator on yi:

Ii =

{
1, if the unit i responds to yi,

0, otherwise.

http://192.9.200.1
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2. Imputation method
We first let pi be known. For the missing Y–values, we suggest the

following imputation method:

y∗i =

 1

n− r

∑
j∈sr

qjyj

pjxj

xi, i ∈ sn−r.

http://192.9.200.1
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It is interesting to note that y∗i is an approximation of the weighted least squares
predictor under the following superpopulation model: yi = βxi + ei,

ε(ei) = 0, ε(e2
i ) = σ2x2

i , ε(eiej) = 0 (i 6= j).

In fact, it can be seen that under the above superpopulation model, the weighted
least squares estimator of β with the weights wi ∝ qi/(pix

2
i ) is given by

β̂ =

∑
sr
(qiyi)/(pixi)∑
sr

1/pi − r
.

Further, the expectation of
∑

sr
1/pi with respect to the response mechanism is

n.

http://192.9.200.1
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3. Estimator of population mean and its
variance
Applying the above imputation method to the PPSWR sampling, the

corresponding Hansen-Hurwitz estimator of the population mean Ȳ is

ˆ̄Y ∗
PPS =

X̄

n

∑
i∈sr

yi

pixi
=

X̄

n

∑
i∈sn

yi

pixi
Ii.

Theorem 1. The estimator ˆ̄Y ∗
PPS is design-unbiased under the non-

uniform response mechanism.

Theorem 2. Under the non-uniform response, the variance of ˆ̄Y ∗
PPS is

given by

V ( ˆ̄Y ∗
PPS) =

1

N 2
·

{
1

n

N∑
i=1

Zi

(
Yi

Zi
− Y

)2

+
1

n

N∑
i=1

qiY
2
i

piZi

}
,

where Zi = Xi/X .

http://192.9.200.1
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4. Jackknife variance estimator
Define the imputed values as follows: For i ∈ sn−r,

y∗ai (j) =


( 1

n− r

∑
k∈sr−{j}

qkyk

pkxk

)
xi, j ∈ sr,( 1

n− r − 1

∑
k∈sr

qkyk

pkxk

)
xi, j ∈ sn−r,

when the j-th sample unit is deleted.

Based on these imputed values, the estimator of Ȳ can be obtained as

ˆ̄Y ∗a
PPS(j) =


X̄

n− 1

∑
i∈sr−{j}

yi

pixi
, j ∈ sr,

X̄

n− 1

∑
i∈sr

yi

pixi
, j ∈ sn−r,

when the j-th sample unit is deleted.

http://192.9.200.1
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Define the j-th pseudovalue as follows:

ˆ̄Y ∗
j = n ˆ̄Y ∗

PPS − (n− 1) ˆ̄Y ∗a
PPS(j).

A jackknife variance estimator of ˆ̄Y ∗
PPS is then given by

vJ( ˆ̄Y ∗
PPS) =

n− 1

n

∑
j∈sn

[ ˆ̄Y ∗
PPS − ˆ̄Y ∗a

PPS(j)]2

=
X̄2

n(n− 1)

∑
i∈sr

y2
i

p2
ix

2
i

− 1

n

(∑
i∈sr

yi

pixi

)2
 .

Theorem 3. Let n > 1. Then under the non-uniform response, we have

E[vJ( ˆ̄Y ∗
PPS)] = V ( ˆ̄Y ∗

PPS).

Theorem 3 shows that the jackknife variance estimator vJ( ˆ̄Y ∗
PPS) is design-

unbiased under the non-uniform response.

http://192.9.200.1
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5. Extension to the case of unknown re-
sponse probability
In practice, the response probability pi is rare to be known. Here we

model the response probability pi by a parametric model pi = g(xi; θ),

where g is a known smooth function and θ is an unknown finite-

dimensional parameter. An example of such a model is the logistic

regression model. The estimator θ̂ of the parameter θ can be obtained

by the maximum likelihood approach.

Let p̂i = g(xi; θ̂) be the estimated response probability. Then the corre-

sponding estimator of the population mean Ȳ and its jackknife variance

estimator are given by

ˆ̄Y e
PPS =

X̄

n

∑
i∈sr

yi

p̂ixi
,

http://192.9.200.1
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and

vJ( ˆ̄Y e
PPS) =

X̄2

n(n− 1)

∑
i∈sr

y2
i

p̂2
ix

2
i

− 1

n

(∑
i∈sr

yi

p̂ixi

)2
 ,

respectively.

For the relationship between the estimators with known and unknown pi, under
some regularity conditions, we have

ˆ̄Y e
PPS = ˆ̄Y ∗

PPS + Op

(
1√
n

)
,

and

vJ( ˆ̄Y e
PPS) = vJ( ˆ̄Y ∗

PPS) + Op

(
1

n3/2

)
.

http://192.9.200.1
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(n) Special case: SRS sampling and uni-
form response

• Imputed value:

y∗i =

1

r

∑
j∈sr

yj

xj

xi, i ∈ sn−r.

• Imputed estimator:

ˆ̄Y m
SRS= ūrx̄n +

r(n− 1)

(r − 1)n
(ȳr − ūrx̄r),

where ūr =
1

r

∑
j∈sr

uj with uj = yj/xj.

http://192.9.200.1
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The estimator ˆ̄Y m
SRS is a design-unbiased estimator under uniform response. It is

interesting that it is just the version of Hartley-Ross estimator (Hartley and Ross
1954, Nature) for estimating the population mean under two-phase sampling.

• Variance:

V ( ˆ̄Y m
SRS) =

1

np
[S2

Y +(1− p)(2Ȳ ŪX̄ + Ū2T̄ − Ū2X̄2− 2Ū Z̄)]+O

(
1

n2

)
,

where T̄ =
1

N

N∑
i=1

Ti with Ti = X2
i , and Z̄ =

1

N

N∑
i=1

Zi with Zi = YiXi,

and

S2
Y =

1

N − 1

N∑
i=1

(Yi − Ȳ )2.

http://192.9.200.1
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• Jackknife variance estimator:

vJ( ˆ̄Y m
SRS) =

1

n(n− 1)(r − 1)

{
(n− 1)(r − 1)ū2

r · s2
x(n)

+
1

(r − 2)2 [n(r − 2)x̄n − (nr − r − 2)x̄r]
2 · s2

u(r) +
(n− 2)2r2

(r − 2)2 s2
y(r)

+
(n− 2)r(nr − 2r2 + 4r − 4)

(r − 2)2 ū2
r · s2

x(r)

+
2(n− 2)r

(r − 2)2 [n(r − 2)x̄n − (nr − r − 2)x̄r] · syu(r)

− 2

(r − 2)2 [(n
2r − n(r2 − r + 2)− (r − 1)(r − 2))(r − 2)x̄n

−(n2r2 − nr(r2 + 4) + 2(3r2 − 4r + 4))x̄r]ūrsux(r)

−2(n− 2)r(nr − r2 + r − 2)

(r − 2)2 ūrsyx(r)

− 2

r − 2
[n(r − 2)x̄n − (nr − r − 2)x̄r]su2x(r)

+
2(nr − r2 + r − 2)

r − 2
ūrsux2(r)− 2(n− 2)r

r − 2
syux(r)

+su2x2(r)− 2r

n
(ȳr − ūrx̄r)sux(r) +

r2

n(r − 1)
(ȳr − ūrx̄r)

2
}

,

where syν1uν2xν3(r) = 1
r−1

∑
j∈sr

(yj − ȳr)
ν1(uj − ūr)

ν2(xj − x̄r)
ν3.

http://192.9.200.1
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Two approximate Jackknife variance estimators:

v′J( ˆ̄Y m
SRS) =

1

n
ū2

rs
2
x(n) +

1

r
[(x̄r − x̄n)

2s2
u(r)− 2(x̄r − x̄n)syu(r) + s2

y(r)]

+

(
1

r
− 2

n

)
ū2

rs
2
x(r) + 2

(
1

r
− 1

n

)
ūr[(x̄r − x̄n)sux(r)− syx(r)],

and

v′′J( ˆ̄Y m
SRS) =

1

n
ū2

rs
2
x(n) +

1

r
s2
y(r) +

(
1

r
− 2

n

)
ū2

rs
2
x(r)− 2

(
1

r
− 1

n

)
ūrsyx(r).

http://192.9.200.1
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Asymptotic design-unbiasedness:

(i) E[vJ( ˆ̄Y m
SRS)] = V ( ˆ̄Y m

SRS) + O
( 1

n2

)
.

(ii) E[v′J( ˆ̄Y m
SRS)] = V ( ˆ̄Y m

SRS) + O
( 1

n2

)
.

(iii) E[v′′J( ˆ̄Y m
SRS)] = V ( ˆ̄Y m

SRS) + O
( 1

n2

)
.

Remark: We should note that the (approximate) design-unbiasedness is the
main requirement for a good estimator in survey sampling. The approximate
design-unbiasedness of the Jackknife variance estimators has been found first in
Zou and Feng (1998), and then in Skinner and Rao (2002) and Zou et al. (2002).
Such a property universally holds from our subsequent analysis.

http://192.9.200.1
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(o) Simulation studies

The data are generated from the three ratio models which are different

only in the auxiliary variables:

yi = 3.9xi + xiεi

with xi ∼ U(0.1, 2.1), N(1, 1), and N(20, 16), respectively, εi ∼
N(0, 1), and xi and εi are assumed to be independent.

In the case of uniform response, we set p = 0.76; in the case of non-

uniform response, the unequal response probability pi for the unit i

follows the logistic model

pi =
exp(−1 + 2.3xi)

1 + exp(−1 + 2.3xi)
.

http://192.9.200.1
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We first generate a finite population with the size of N = 10, 000. Then the
samples with n = 100 and n = 500 are drawn from the finite population by the
PPSWR sampling, respectively. We repeat the process B = 5, 000 times. For
the b-th run, denote the estimators of the population mean under the uniform
and non-uniform responses as ˆ̄Y

I(b)
PPS and ˆ̄Y

∗(b)
PPS, respectively. We calculate the

simulated means and variances as follows:

E∗(
ˆ̄Y I
PPS) =

1

B

B∑
b=1

ˆ̄Y
I(b)
PPS, E∗(

ˆ̄Y ∗
PPS) =

1

B

B∑
b=1

ˆ̄Y
∗(b)
PPS;

and

V∗(
ˆ̄Y I
PPS) =

1

B

B∑
b=1

( ˆ̄Y
I(b)
PPS − Ȳ )2, V∗(

ˆ̄Y ∗
PPS) =

1

B

B∑
b=1

( ˆ̄Y
∗(b)
PPS − Ȳ )2.

Similarly, the corresponding jackknife variance estimators are calculated as

E∗[vJ( ˆ̄Y I
PPS)] =

1

B

B∑
b=1

v
(b)
J ( ˆ̄Y I

PPS), and E∗[vJ( ˆ̄Y ∗
PPS)] =

1

B

B∑
b=1

v
(b)
J ( ˆ̄Y ∗

PPS).

http://192.9.200.1
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Table 1 summarizes the results on the simulated mean, variance and jackknife
variance estimate. It can be seen from the table that both of the estimators ˆ̄Y I

PPS

and ˆ̄Y ∗
PPS are very close to the true population means for the three distributions

of auxiliary variable. Also, the jackknife variance estimators perform very well.

http://192.9.200.1


Background

Imputation method . . .

Special case: SRS . . .

Simulation studies

Future researches

�¯Ì�

I K �

JJ II

J I

1 22�� 23

� £

�¶w«

' 4

ò Ñ

To study the effect of the response probability, we set various response proba-
bilities: p = 0.5 for uniform response, and pi follows

pi =
exp{0.3(xi − X̄)}

1 + exp{0.3(xi − X̄)}

for non-uniform response. The results are presented in Table 2. It is observed
that the approximate design-unbiasedness of the proposed estimators still holds.
On the other hand, it is also clear that the variances become larger for low re-
sponse probability. For some other settings of response probability, we obtain
the similar results but omit them here for saving space.

http://192.9.200.1
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(Ê) Future researches

• Incomplete auxiliary information and multiple auxiliary informa-

tion

• Estimation of response probability: the use of non-parametric ap-

proach.

• Other unequal probability sampling

http://192.9.200.1
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Thank you!
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