Outline

Adaptive Penalty
000000000

Shen and Ye's proposal Proof Conclusion

.. . Adaptive Linear Regression Selection

Hung Chen

Department of Mathematics Joint work with Mr. Chiuan-Fa Tang Hsu Centennial Memorial Conference at Peking University

7/07/2010

Outline

Adaptive Penalty
000000000

Shen and Ye's proposal Proof Conclusion

1 Introduction

- **•** Objective
- Nested Linear Regression Models

2 Adaptive Penalty

- Unbiased Risk Estimate
- **•** Generalized degrees of freedom

3 Shen and Ye's proposal

- 4 Proof
- 5 Conclusion

Objective

Outline

Adaptive Penalty
000000000

My Own Curiosity

Introduction
●○○○

- How do we get an unbiaed risk estimate (prediction error) with model selection?
	- C_p is derived to give an unbiased prediction error when a particular model *M^k* is used.
	- The prediction error of a linear model *M^k* is

$$
PE(\hat{\boldsymbol{\beta}}_k) = E\Vert \mathbf{Y}^* - \mathbf{X}_k \hat{\boldsymbol{\beta}}_k \Vert^2
$$

Shen and Ye's proposal Proof Conclusion

where **Y***[∗]* comes from same distribution as **Y** in the training data.

- The first local minimum Lasso coupled with *C^p* sets almost all
- $\hat{\beta}_j$ $(\beta_j = 0)$ to zero except those $\hat{\beta}_j$ exceeding the threshold
- *[|]β*ˆ*|*(*p−p*ˆ0+1) when the regressors are orthogonal.

Note that

$$
\|\mathbf{y}-\hat{\mu}_{k}^{LS}\|^{2}=\|\mathbf{y}-\hat{\mu}_{k}^{Lasso}\|^{2}-k\frac{n}{p}\|\hat{\beta}\|_{(p-k+1)}^{2}.
$$

Will the proposal made in Shen and Ye (2002, *JASA*) lead to Lasso estimate though least-squares estimate?

Consider a linear regression model with normal error,

$$
\mathbf{Y} = \boldsymbol{\mu} + \boldsymbol{\epsilon} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon},
$$

where

- $\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_p)$ is an $n \times p$ matrix,
- $\boldsymbol{\beta} = (\beta_1 \dots, \beta_p)^{\mathsf{T}}$,
- $\boldsymbol{\mu} = (\mu_1, \dots, \mu_n)^T = \mathbf{X}\boldsymbol{\beta},$
- $\boldsymbol{\epsilon} = (\varepsilon_1, \ldots, \varepsilon_n)^{\mathcal{T}} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$, and σ^2 is known.

Introduction
○○●○ Nested Linear Regression Models

Outline

Adaptive Penalty
000000000

Nested Models

We only consider the nested linear competing model

$$
\{M_k, k=0,\ldots,p\}.
$$

Shen and Ye's proposal Proof Conclusion

- Lasso leads to a data-driven nested models.
- For model M_k , $\beta_j \neq 0$ for $j \leq k$ and $\beta_j = 0$ for $j > k$.
- *β*'s are estimated by the **least square method** and
- μ is estimated by

$$
\hat{\boldsymbol{\mu}}_{M_k} = P_{M_k} \mathbf{Y},
$$

where P_{M_k} is the projection matrix corresponding to model M_k .

• Its residual sum of squares is defined as

$$
RSS(M_k) = (\mathbf{Y} - \hat{\boldsymbol{\mu}}_{M_k})^T (\mathbf{Y} - \hat{\boldsymbol{\mu}}_{M_k}).
$$

If AIC (Mallows' C_p) is used to score models, we choose the model \hat{M} by minimizing

$$
RSS(M_k) + 2|M_k|\sigma^2
$$

with respect to all competing models $\{M_k, k = 0, \ldots, p\}$, where $|M_k|$ is the size of M_k .

Note that

- It does not include the random error introduced in model selection procedure.
- What can be done?
	- Refer to the proposal in Shen and Ye (2002).

Outline Introduction
0000 Adaptive Penalty
 \bullet 00000000 Shen and Ye's proposal Proof Conclusion Unbiased Risk Estimate Unbiased risk estimate

Define the **loss function**

$$
\ell(\mu, \hat{\mu}_{\hat{M}}) = \frac{1}{n}(\mu - \hat{\mu}_{\hat{M}})^{T}(\mu - \hat{\mu}_{\hat{M}}) + \sigma^{2}
$$

and the **risk** is

$$
E\left[\ell(\mu,\hat{\mu}_{\hat{M}})\right] = E\left[\frac{1}{n}(\mu-\hat{\mu}_{\hat{M}})^{\mathsf{T}}(\mu-\hat{\mu}_{\hat{M}}) + \sigma^2\right],
$$

where

$$
\hat{\mu}_{\hat{M}} = \sum_{k=0}^{p} \hat{\mu}_{M_k} \cdot 1_{\{\hat{M}=k\}} = \sum_{k=0}^{p} P_{M_k} \mathbf{Y} \cdot 1_{\{\hat{M}=k\}}.
$$

Introduction
0000 Adaptive Penalty
00000000 Shen and Ye's proposal Proof Conclusion Generalized degrees of freedom Generalized degrees of freedom

Define $\hat{M}(\lambda)$ to be the minimizer of

Outline

$$
RSS(M_k) + \lambda |M_k|\sigma^2
$$

with respect to all competing models $\{M_k, k = 0, \ldots, p\}$. Note that 4

$$
\frac{1}{n}\Big\{RSS(\hat{M}(\lambda))+2E[\varepsilon^{\mathsf{T}}(\hat{\boldsymbol{\mu}}_{\hat{M}(\lambda)}-\boldsymbol{\mu})]\Big\}
$$

are **unbiased risk estimator** for each *λ >* 0. Define

$$
g_0(\lambda) = \frac{2}{\sigma^2} E\left[\epsilon^{\mathcal{T}}(\hat{\boldsymbol{\mu}}_{\hat{\mathcal{M}}(\lambda)} - \boldsymbol{\mu})\right].
$$

 \bullet $g_0(\lambda)/2$ is defined as the generalized degrees of freedom (GDF) by Ye (1998, *JASA*).

Introduction
0000 Generalized degrees of freedom

Outline

Shen and Ye's proposal (2002, *JASA*)

Adaptive Penalty
00000000

Shen and Ye (2002) proposed to choose *λ >* 0 to minimize the unbiased risk estimator

$$
\hat{\lambda} = \text{argmin}_{\lambda>0} \left\{ RSS(\hat{M}(\lambda)) + g_0(\lambda)\sigma^2 \right\}.
$$

Shen and Ye's proposal Proof Conclusion

The resulting selected model is $\hat{M}(\hat{\lambda})$.

As an attempt to understand their proposal, consider the situation

- BIC is consistent (no underfitting).
- **·** nested competing models
- *λ ∈* [0*,* log *n*]

Is

$$
\hat{M}(\hat{\lambda}) = \hat{M}(\log n) = M_{k_0}
$$

or $\hat{\lambda} = \log n?$

Generalized degrees of freedom Assumptions: BIC is consistent

 $. 0000$ Introduction

Outline

Recall that p_0 is the number of covariates in the true model. Assume that

Assumption B1. There exists a constant *c >* 0 such that $\boldsymbol{\mu}^{\mathcal{T}}(\mathsf{I}-\mathsf{P}_{M_k})\boldsymbol{\mu}\geq c n$ for all $k<\rho_0$, where

Adaptive Penalty
00000000

$$
\boldsymbol{\mu} = \mathbf{X}_{p_0}(\beta_1, \ldots, \beta_{p_0})^T
$$

Shen and Ye's proposal Proof Conclusion

is the mean vector of the true model.

Assumption B2. The simple size *n* is large enough such that *cn >* 2*p*⁰ log *n*.

Assumption N. log $n > 2 \log(p - p_0)$.

0000 Generalized degrees of freedom

Set-up

Outline

Assume *ϵ ∼ N*(**0***,* **I**).

Introduction

- Note that *RSS*(*p*0) *− RSS*(*p*⁰ + 1), *RSS*(*p*⁰ + 1) *−RSS*(*p*⁰ + 2), *. . .*, *RSS*(*p −* 1) *− RSS*(*p*) consists of a sequence of iid random variables with χ_1^2 distribution.
- $\textsf{Write}~\mathit{RSS}(p_0\!+\!j\!-\!1)\!-\!\mathit{RSS}(p_0\!+\!j)$ as V_j where $V_j\sim\chi_1^2$ and

$$
C(k,\lambda)=\epsilon^T\epsilon-\delta_k(\lambda)=RSS(M_k)+\lambda k, \ \ k=p_0,\ldots,p,
$$

Shen and Ye's proposal Proof Conclusion

 $\text{where }\delta_k(\lambda) = \boldsymbol{\epsilon}^T P_k \boldsymbol{\epsilon} - \lambda \boldsymbol{k}.$

- Consider the minimizer of $C(M_{p_0+j},\lambda)$ over $0 \leq j \leq p-p_0$.
	- Define a partial sum process with drift *λ −* 1

Adaptive Penalty
00000000

$$
S_j(\lambda) = \sum_{k=1}^j (-V_k + \lambda) \text{ and } S_0(\lambda) = 0
$$

Find \hat{j} to achieve the minimum of $\{S_j(\lambda), 0 \le j \le p - p_0\}$.

• Where the minimum should occur when $\lambda = 2$? at the very beginning or at the end

It follows from the results of Spitzer (1956), Woodroofe (1982) and Zhang (1992) that, for all *λ ∈* [0*,* log *n*],

$$
g_0(\lambda) = 2 \sum_{j=1}^{p-p_0} [P(\chi_{j+2}^2 > j\lambda)] + 2p_0.
$$

Note that

- $g_0(\lambda)$ is strictly decreasing.
- $g_0(0) = 2p$.
- $g_0(\log n) \to 2p_0$ as $n \to \infty$.

Introduction
0000 Adaptive Penalty
00000000 Generalized degrees of freedom AMS improves.

Outline

Consider a simulation study with $p_0 = 0$, $p - p_0 = 20$, $n = 404$ $(\log n = 6)$, and $\sigma^2 = 1$. $\hat{\textsf{T}}$ he black points are $\mathit{RSS}(\hat{\textit{M}}(\lambda)) - \mathit{RSS}(\textit{M}_{p_0})$ and the blue points $\mathcal{A} = RSS(\hat{M}(\lambda)) + g_0(\lambda) - RSS(M_{p_0}).$

Shen and Ye's proposal Proof Conclusion

Introduction
0000 Generalized degrees of freedom

Outline

Adaptive Penalty
00000000

Shen and Ye's proposal Proof Conclusion

Probability of correct selection:

Adaptive Penalty
000000000

Need a detailed description of $g_0(\lambda)$

Recall

Outline

$$
\hat{\lambda} = \min_{\lambda > 0} \{ \lambda : RSS(\hat{M}(\lambda)) + g_0(\lambda) \}
$$

Shen and Ye's proposal Proof Conclusion

and choose model $\hat{M}(\hat{\lambda})$ which retains the first $\hat{j}(\hat{\lambda})$ predictors.

- W hen $\lambda=0$, $|\hat{\mathcal{M}}(0)|=\rho$ for all realizations and $RSS(\hat{M}(0)) = \mathbf{Y}^{T}(\mathbf{I} - \mathbf{P}_p)\mathbf{Y}$. Then $g_0(0) = 2p$.
- W hen $\lambda = \mathsf{In} \, n, \, |\hat{\mathcal{M}}(\mathsf{In} \, n)| = p_0$ for almost all realizations and $RSS(\hat{M}(\ln n)) = \mathbf{Y}^{\hat{T}}(\mathbf{I} - \mathbf{P}_{p_0})\mathbf{Y}$. Then $g_0(\ln n) = 2p_0$.

Note that

$$
\[RSS(\hat{M}(0))+2p\sigma^2\]-[RSS(\hat{M}(\ln n))+2p_0\sigma^2\]=\sigma^2\sum_{k=1}^{p-p_0}(2-V_k)
$$

which is greater than 0 with probability close to 1 when $p − p_0$ is large.

Outline

Adaptive Penalty
000000000

Estimate $g_0(\lambda)$ when $\lambda = 2$

Consider the case that $p - p_0 = 20$.

For one realization, we have 2 observations 4*.*7 and 7*.*2 which are greater than 2. (i.e. $V_1 = 4.7$ and $V_{14} = 7.2$.)

Shen and Ye's proposal Proof Conclusion

Minimum of random process *{Sj*(2)*,* 0 *≤ j ≤* 20*}* occurs at $\hat{j}(2) = 1$ for this realization.

• Include one extra predictor x_{p_0+1} . (Note that $S_0(2) = 0$.)

- Let $N(\lambda)$ denote the number of V_j which are greater than λ . Note that *N*(2) *∼ Bin*(20*,* 0*.*1573)
	-
- $S_i(2)$: positive drift

• $\hat{j}(2)$ cannot be large.

AMS improves when *λ ≥* 2.

Outline

Adaptive Penalty
000000000

Adaptive selection over $\lambda \in [0, 0.5]$ \cup {log *n*}

Show that $\hat{\lambda} = \log n$ with probability close to 1 by finding a bound on the following probability.

$$
P\left(RSS(\hat{j}(\lambda))+g_0(\lambda)
$$

Shen and Ye's proposal Proof Conclusion

Note that

$$
P\left(V_1 + \dots + V_{\hat{J}(\lambda)} < g_0(\lambda) \text{ for all } \lambda \in [0.0.5]\right) \\
\geq P\left(V_1 + \dots + V_{p-p_0} < g_0(0) - 4\right) \\
= P\left(V_1 + \dots + V_{p-p_0} < 2(p-p_0) - 4\right).
$$

Note that

- $g_0(\lambda)$ is strickly decreasing and continuous on $\lambda \in [0, \ln n]$.
- For all $g_0(\ln n) < \delta \le g_0(0)$, there exists a unique λ_{δ} such that $g_0(\lambda_{\delta}) = g_0(0) - \delta$.
- Claim: When $\delta = 4$, 0.5 $\leq \lambda_{\delta}$.

Need to prove that, for given *λ <* 1,

$$
P\left(\sum_{j=1}^{i+2} V_j > i\lambda\right) \to 1 \quad \text{for } i \text{ large enough.}
$$

Then

$$
g_0(0.5) \approx \sum_{j=1}^{20} P\left(\sum_{j=1}^{i+2} V_j > i\lambda\right) + ((p - p_0) - 20).
$$

Outline

Adaptive Penalty
000000000

Cont.

Theorem 1 in Teicher(1984)

Introduction
0000

- Let Y_j be independent random variables with $E[Y_j] = 0$, $E[Y_j^2] = \sigma_j^2$ and $E[Y_j]^k \leq k! c_2^{k-2} \sigma_j^2/2$, for all $k \geq 3$ and some *c*² *>* 0.
	- Define $S_n = \sum_{j=1}^n a_{nj} Y_j$ where a_{nj} are arbitarary constants.

Shen and Ye's proposal Proof Conclusion

Set $v_n^2 = \sum_{j=1}^n a_{nj}^2 \sigma_j^2$ and $c_n = c_2 \max_{1 \le j \le n} |a_{nj}|$. Then, for $x > 0$,

$$
P(S_n > xv_n) \leq \exp\left\{\frac{-x^2}{2}\left(1 + \frac{c_n x}{v_n}\right)^{-1}\right\}.
$$

In our case, $Y_j = V_j - 1$, $E[Y_j] = 0$, and $E[Y_j]^2 = \sigma_j^2 = 2$. It follows from Lemma 5 in Henry Teicher(1984) that $E|Y_j|^k = E|V_j - 1|^k \leq k!2^{k-2}$ for all $k \geq 3$

Outline

Adaptive Penalty
000000000

Shen and Ye's proposal **Proof** Conclusion

Cont. *p − p*⁰ *>* 20

For $\lambda = 0.5$, $c(0.5) = 0.9207$,

$$
2\left(\sum_{i=1}^{20} P\left(\sum_{j=1}^{i+2} V_j > i\lambda\right) + ((p - p_0) - 20)\right) - g_0(\lambda)
$$

$$
\leq 2\left(\sum_{i=21}^{p-p_0} P\left(\sum_{j=1}^{i+2} V_j \leq i\lambda\right)\right) \leq 2\left(\sum_{i=21}^{\infty} P\left(\sum_{j=1}^{i+2} V_j \leq i\lambda\right)\right)
$$

$$
\leq 2 \cdot c(0.5) \frac{\exp\{-(21+2)(1-\lambda)^2/12\}}{1 - \exp\{-(1-\lambda)^2/12\}} = 1.2186.
$$

Moreover,

$$
2\sum_{i=1}^{20} P\left(\sum_{j=1}^{i+2} V_j \leq i\lambda\right) = 38.1684 = 40 - 1.8316.
$$

We conclude that 1*.*8316 + 1*.*2186 = 3*.*0502 *<* 4 and $g_0(0,5)$ > $2(p-p_0)$ − 4 for $p-p_0$ > 20. $(P(\sqrt{2p} > 40) = 0.0050$

Conclusion

Introduction
0000

Outline

When *λ ∈* (2*,* log *n*], there are about 75% to choose the true model.

Adaptive Penalty
000000000

• The probability of selecting correct model decreases to 55% if $\lambda \in [1, 2) \cup [2, \log n]$.

Shen and Ye's proposal Proof Conclusion

- For the region of λ are $[0, \log n]$, $\in [0.5, \log n]$, or $n[1, \log n]$, there are no differences in the probability of correct selection.
	- We still cannot provide a good interpretation.